Cargando…
Transgenic mice for in vivo epigenome editing with CRISPR-based systems
CRISPR-Cas9 technologies have dramatically increased the ease of targeting DNA sequences in the genomes of living systems. Fusion of chromatin-modifying domains to the nuclease-deactivated dCas9 has enabled targeted epigenome editing in both cultured cells and animal models. However, delivering larg...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8349887/ https://www.ncbi.nlm.nih.gov/pubmed/34341582 http://dx.doi.org/10.1038/s41592-021-01207-2 |
_version_ | 1783735636661895168 |
---|---|
author | Gemberling, Matthew P. Siklenka, Keith Rodriguez, Erica Tonn-Eisinger, Katherine R. Barrera, Alejandro Liu, Fang Kantor, Ariel Li, Liqing Cigliola, Valentina Hazlett, Mariah F. Williams, Courtney A. Bartelt, Luke C. Madigan, Victoria J. Bodle, Josephine C. Daniels, Heather Rouse, Douglas C. Hilton, Isaac B. Asokan, Aravind Ciofani, Maria Poss, Kenneth D. Reddy, Timothy E. West, Anne E. Gersbach, Charles A. |
author_facet | Gemberling, Matthew P. Siklenka, Keith Rodriguez, Erica Tonn-Eisinger, Katherine R. Barrera, Alejandro Liu, Fang Kantor, Ariel Li, Liqing Cigliola, Valentina Hazlett, Mariah F. Williams, Courtney A. Bartelt, Luke C. Madigan, Victoria J. Bodle, Josephine C. Daniels, Heather Rouse, Douglas C. Hilton, Isaac B. Asokan, Aravind Ciofani, Maria Poss, Kenneth D. Reddy, Timothy E. West, Anne E. Gersbach, Charles A. |
author_sort | Gemberling, Matthew P. |
collection | PubMed |
description | CRISPR-Cas9 technologies have dramatically increased the ease of targeting DNA sequences in the genomes of living systems. Fusion of chromatin-modifying domains to the nuclease-deactivated dCas9 has enabled targeted epigenome editing in both cultured cells and animal models. However, delivering large dCas9 fusion proteins to target cells and tissues is an obstacle to widespread adoption of these tools for in vivo studies. Here we describe the generation and characterization of two conditional transgenic mouse lines for epigenome editing, Rosa26:LSL-dCas9-p300 for gene activation and Rosa26:LSL-dCas9-KRAB for gene repression. By targeting gRNAs to transcriptional start sites or distal enhancer elements, we demonstrate regulation of target genes and corresponding changes to epigenetic states and downstream phenotypes in the brain and liver in vivo, and in T cells and fibroblasts ex vivo. These mouse lines are convenient and valuable tools for facile, temporally controlled, and tissue-restricted epigenome editing and manipulation of gene expression in vivo. |
format | Online Article Text |
id | pubmed-8349887 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-83498872022-02-02 Transgenic mice for in vivo epigenome editing with CRISPR-based systems Gemberling, Matthew P. Siklenka, Keith Rodriguez, Erica Tonn-Eisinger, Katherine R. Barrera, Alejandro Liu, Fang Kantor, Ariel Li, Liqing Cigliola, Valentina Hazlett, Mariah F. Williams, Courtney A. Bartelt, Luke C. Madigan, Victoria J. Bodle, Josephine C. Daniels, Heather Rouse, Douglas C. Hilton, Isaac B. Asokan, Aravind Ciofani, Maria Poss, Kenneth D. Reddy, Timothy E. West, Anne E. Gersbach, Charles A. Nat Methods Article CRISPR-Cas9 technologies have dramatically increased the ease of targeting DNA sequences in the genomes of living systems. Fusion of chromatin-modifying domains to the nuclease-deactivated dCas9 has enabled targeted epigenome editing in both cultured cells and animal models. However, delivering large dCas9 fusion proteins to target cells and tissues is an obstacle to widespread adoption of these tools for in vivo studies. Here we describe the generation and characterization of two conditional transgenic mouse lines for epigenome editing, Rosa26:LSL-dCas9-p300 for gene activation and Rosa26:LSL-dCas9-KRAB for gene repression. By targeting gRNAs to transcriptional start sites or distal enhancer elements, we demonstrate regulation of target genes and corresponding changes to epigenetic states and downstream phenotypes in the brain and liver in vivo, and in T cells and fibroblasts ex vivo. These mouse lines are convenient and valuable tools for facile, temporally controlled, and tissue-restricted epigenome editing and manipulation of gene expression in vivo. 2021-08-02 2021-08 /pmc/articles/PMC8349887/ /pubmed/34341582 http://dx.doi.org/10.1038/s41592-021-01207-2 Text en http://www.nature.com/authors/editorial_policies/license.html#termsUsers may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Gemberling, Matthew P. Siklenka, Keith Rodriguez, Erica Tonn-Eisinger, Katherine R. Barrera, Alejandro Liu, Fang Kantor, Ariel Li, Liqing Cigliola, Valentina Hazlett, Mariah F. Williams, Courtney A. Bartelt, Luke C. Madigan, Victoria J. Bodle, Josephine C. Daniels, Heather Rouse, Douglas C. Hilton, Isaac B. Asokan, Aravind Ciofani, Maria Poss, Kenneth D. Reddy, Timothy E. West, Anne E. Gersbach, Charles A. Transgenic mice for in vivo epigenome editing with CRISPR-based systems |
title | Transgenic mice for in vivo epigenome editing with CRISPR-based systems |
title_full | Transgenic mice for in vivo epigenome editing with CRISPR-based systems |
title_fullStr | Transgenic mice for in vivo epigenome editing with CRISPR-based systems |
title_full_unstemmed | Transgenic mice for in vivo epigenome editing with CRISPR-based systems |
title_short | Transgenic mice for in vivo epigenome editing with CRISPR-based systems |
title_sort | transgenic mice for in vivo epigenome editing with crispr-based systems |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8349887/ https://www.ncbi.nlm.nih.gov/pubmed/34341582 http://dx.doi.org/10.1038/s41592-021-01207-2 |
work_keys_str_mv | AT gemberlingmatthewp transgenicmiceforinvivoepigenomeeditingwithcrisprbasedsystems AT siklenkakeith transgenicmiceforinvivoepigenomeeditingwithcrisprbasedsystems AT rodriguezerica transgenicmiceforinvivoepigenomeeditingwithcrisprbasedsystems AT tonneisingerkatheriner transgenicmiceforinvivoepigenomeeditingwithcrisprbasedsystems AT barreraalejandro transgenicmiceforinvivoepigenomeeditingwithcrisprbasedsystems AT liufang transgenicmiceforinvivoepigenomeeditingwithcrisprbasedsystems AT kantorariel transgenicmiceforinvivoepigenomeeditingwithcrisprbasedsystems AT liliqing transgenicmiceforinvivoepigenomeeditingwithcrisprbasedsystems AT cigliolavalentina transgenicmiceforinvivoepigenomeeditingwithcrisprbasedsystems AT hazlettmariahf transgenicmiceforinvivoepigenomeeditingwithcrisprbasedsystems AT williamscourtneya transgenicmiceforinvivoepigenomeeditingwithcrisprbasedsystems AT barteltlukec transgenicmiceforinvivoepigenomeeditingwithcrisprbasedsystems AT madiganvictoriaj transgenicmiceforinvivoepigenomeeditingwithcrisprbasedsystems AT bodlejosephinec transgenicmiceforinvivoepigenomeeditingwithcrisprbasedsystems AT danielsheather transgenicmiceforinvivoepigenomeeditingwithcrisprbasedsystems AT rousedouglasc transgenicmiceforinvivoepigenomeeditingwithcrisprbasedsystems AT hiltonisaacb transgenicmiceforinvivoepigenomeeditingwithcrisprbasedsystems AT asokanaravind transgenicmiceforinvivoepigenomeeditingwithcrisprbasedsystems AT ciofanimaria transgenicmiceforinvivoepigenomeeditingwithcrisprbasedsystems AT posskennethd transgenicmiceforinvivoepigenomeeditingwithcrisprbasedsystems AT reddytimothye transgenicmiceforinvivoepigenomeeditingwithcrisprbasedsystems AT westannee transgenicmiceforinvivoepigenomeeditingwithcrisprbasedsystems AT gersbachcharlesa transgenicmiceforinvivoepigenomeeditingwithcrisprbasedsystems |