Cargando…
Development of a machine learning model to predict the risk of late cardiogenic shock in patients with ST-segment elevation myocardial infarction
BACKGROUND: The in-hospital mortality of patients with ST-segment elevation myocardial infarction (STEMI) increases to more than 50% following a cardiogenic shock (CS) event. This study highlights the need to consider the risk of delayed calculation in developing in-hospital CS risk models. This rep...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8350690/ https://www.ncbi.nlm.nih.gov/pubmed/34430603 http://dx.doi.org/10.21037/atm-21-2905 |