Cargando…

Two-dimensional multiplexed assay for rapid and deep SARS-CoV-2 serology profiling and for machine learning prediction of neutralization capacity

Antibody responses serve as the primary protection against SARS-CoV-2 infection through neutralization of viral entry into cells. We have developed a two-dimensional multiplex bead binding assay (2D-MBBA) that quantifies multiple antibody isotypes against multiple antigens from a single measurement....

Descripción completa

Detalles Bibliográficos
Autores principales: Koide, Akiko, Panchenko, Tatyana, Wang, Chan, Thannickal, Sara A., Romero, Larizbeth A., Teng, Kai Wen, Li, Francesca-Zhoufan, Akkappedi, Padma, Corrado, Alexis D., Caro, Jessica, Diefenbach, Catherine, Samanovic, Marie I., Mulligan, Mark J., Hattori, Takamitsu, Stapleford, Kenneth A., Li, Huilin, Koide, Shohei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8351774/
https://www.ncbi.nlm.nih.gov/pubmed/34373852
http://dx.doi.org/10.1101/2021.08.03.454782
_version_ 1783736044133285888
author Koide, Akiko
Panchenko, Tatyana
Wang, Chan
Thannickal, Sara A.
Romero, Larizbeth A.
Teng, Kai Wen
Li, Francesca-Zhoufan
Akkappedi, Padma
Corrado, Alexis D.
Caro, Jessica
Diefenbach, Catherine
Samanovic, Marie I.
Mulligan, Mark J.
Hattori, Takamitsu
Stapleford, Kenneth A.
Li, Huilin
Koide, Shohei
author_facet Koide, Akiko
Panchenko, Tatyana
Wang, Chan
Thannickal, Sara A.
Romero, Larizbeth A.
Teng, Kai Wen
Li, Francesca-Zhoufan
Akkappedi, Padma
Corrado, Alexis D.
Caro, Jessica
Diefenbach, Catherine
Samanovic, Marie I.
Mulligan, Mark J.
Hattori, Takamitsu
Stapleford, Kenneth A.
Li, Huilin
Koide, Shohei
author_sort Koide, Akiko
collection PubMed
description Antibody responses serve as the primary protection against SARS-CoV-2 infection through neutralization of viral entry into cells. We have developed a two-dimensional multiplex bead binding assay (2D-MBBA) that quantifies multiple antibody isotypes against multiple antigens from a single measurement. Here, we applied our assay to profile IgG, IgM and IgA levels against the spike antigen, its receptor-binding domain and natural and designed mutants. Machine learning algorithms trained on the 2D-MBBA data substantially improve the prediction of neutralization capacity against the authentic SARS-CoV-2 virus of serum samples of convalescent patients. The algorithms also helped identify a set of antibody isotype–antigen datasets that contributed to the prediction, which included those targeting regions outside the receptor-binding interface of the spike protein. We applied the assay to profile samples from vaccinated, immune-compromised patients, which revealed differences in the antibody profiles between convalescent and vaccinated samples. Our approach can rapidly provide deep antibody profiles and neutralization prediction from essentially a drop of blood without the need of BSL-3 access and provides insights into the nature of neutralizing antibodies. It may be further developed for evaluating neutralizing capacity for new variants and future pathogens.
format Online
Article
Text
id pubmed-8351774
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-83517742021-08-10 Two-dimensional multiplexed assay for rapid and deep SARS-CoV-2 serology profiling and for machine learning prediction of neutralization capacity Koide, Akiko Panchenko, Tatyana Wang, Chan Thannickal, Sara A. Romero, Larizbeth A. Teng, Kai Wen Li, Francesca-Zhoufan Akkappedi, Padma Corrado, Alexis D. Caro, Jessica Diefenbach, Catherine Samanovic, Marie I. Mulligan, Mark J. Hattori, Takamitsu Stapleford, Kenneth A. Li, Huilin Koide, Shohei bioRxiv Article Antibody responses serve as the primary protection against SARS-CoV-2 infection through neutralization of viral entry into cells. We have developed a two-dimensional multiplex bead binding assay (2D-MBBA) that quantifies multiple antibody isotypes against multiple antigens from a single measurement. Here, we applied our assay to profile IgG, IgM and IgA levels against the spike antigen, its receptor-binding domain and natural and designed mutants. Machine learning algorithms trained on the 2D-MBBA data substantially improve the prediction of neutralization capacity against the authentic SARS-CoV-2 virus of serum samples of convalescent patients. The algorithms also helped identify a set of antibody isotype–antigen datasets that contributed to the prediction, which included those targeting regions outside the receptor-binding interface of the spike protein. We applied the assay to profile samples from vaccinated, immune-compromised patients, which revealed differences in the antibody profiles between convalescent and vaccinated samples. Our approach can rapidly provide deep antibody profiles and neutralization prediction from essentially a drop of blood without the need of BSL-3 access and provides insights into the nature of neutralizing antibodies. It may be further developed for evaluating neutralizing capacity for new variants and future pathogens. Cold Spring Harbor Laboratory 2021-08-04 /pmc/articles/PMC8351774/ /pubmed/34373852 http://dx.doi.org/10.1101/2021.08.03.454782 Text en https://creativecommons.org/licenses/by-nd/4.0/This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, and only so long as attribution is given to the creator. The license allows for commercial use.
spellingShingle Article
Koide, Akiko
Panchenko, Tatyana
Wang, Chan
Thannickal, Sara A.
Romero, Larizbeth A.
Teng, Kai Wen
Li, Francesca-Zhoufan
Akkappedi, Padma
Corrado, Alexis D.
Caro, Jessica
Diefenbach, Catherine
Samanovic, Marie I.
Mulligan, Mark J.
Hattori, Takamitsu
Stapleford, Kenneth A.
Li, Huilin
Koide, Shohei
Two-dimensional multiplexed assay for rapid and deep SARS-CoV-2 serology profiling and for machine learning prediction of neutralization capacity
title Two-dimensional multiplexed assay for rapid and deep SARS-CoV-2 serology profiling and for machine learning prediction of neutralization capacity
title_full Two-dimensional multiplexed assay for rapid and deep SARS-CoV-2 serology profiling and for machine learning prediction of neutralization capacity
title_fullStr Two-dimensional multiplexed assay for rapid and deep SARS-CoV-2 serology profiling and for machine learning prediction of neutralization capacity
title_full_unstemmed Two-dimensional multiplexed assay for rapid and deep SARS-CoV-2 serology profiling and for machine learning prediction of neutralization capacity
title_short Two-dimensional multiplexed assay for rapid and deep SARS-CoV-2 serology profiling and for machine learning prediction of neutralization capacity
title_sort two-dimensional multiplexed assay for rapid and deep sars-cov-2 serology profiling and for machine learning prediction of neutralization capacity
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8351774/
https://www.ncbi.nlm.nih.gov/pubmed/34373852
http://dx.doi.org/10.1101/2021.08.03.454782
work_keys_str_mv AT koideakiko twodimensionalmultiplexedassayforrapidanddeepsarscov2serologyprofilingandformachinelearningpredictionofneutralizationcapacity
AT panchenkotatyana twodimensionalmultiplexedassayforrapidanddeepsarscov2serologyprofilingandformachinelearningpredictionofneutralizationcapacity
AT wangchan twodimensionalmultiplexedassayforrapidanddeepsarscov2serologyprofilingandformachinelearningpredictionofneutralizationcapacity
AT thannickalsaraa twodimensionalmultiplexedassayforrapidanddeepsarscov2serologyprofilingandformachinelearningpredictionofneutralizationcapacity
AT romerolarizbetha twodimensionalmultiplexedassayforrapidanddeepsarscov2serologyprofilingandformachinelearningpredictionofneutralizationcapacity
AT tengkaiwen twodimensionalmultiplexedassayforrapidanddeepsarscov2serologyprofilingandformachinelearningpredictionofneutralizationcapacity
AT lifrancescazhoufan twodimensionalmultiplexedassayforrapidanddeepsarscov2serologyprofilingandformachinelearningpredictionofneutralizationcapacity
AT akkappedipadma twodimensionalmultiplexedassayforrapidanddeepsarscov2serologyprofilingandformachinelearningpredictionofneutralizationcapacity
AT corradoalexisd twodimensionalmultiplexedassayforrapidanddeepsarscov2serologyprofilingandformachinelearningpredictionofneutralizationcapacity
AT carojessica twodimensionalmultiplexedassayforrapidanddeepsarscov2serologyprofilingandformachinelearningpredictionofneutralizationcapacity
AT diefenbachcatherine twodimensionalmultiplexedassayforrapidanddeepsarscov2serologyprofilingandformachinelearningpredictionofneutralizationcapacity
AT samanovicmariei twodimensionalmultiplexedassayforrapidanddeepsarscov2serologyprofilingandformachinelearningpredictionofneutralizationcapacity
AT mulliganmarkj twodimensionalmultiplexedassayforrapidanddeepsarscov2serologyprofilingandformachinelearningpredictionofneutralizationcapacity
AT hattoritakamitsu twodimensionalmultiplexedassayforrapidanddeepsarscov2serologyprofilingandformachinelearningpredictionofneutralizationcapacity
AT staplefordkennetha twodimensionalmultiplexedassayforrapidanddeepsarscov2serologyprofilingandformachinelearningpredictionofneutralizationcapacity
AT lihuilin twodimensionalmultiplexedassayforrapidanddeepsarscov2serologyprofilingandformachinelearningpredictionofneutralizationcapacity
AT koideshohei twodimensionalmultiplexedassayforrapidanddeepsarscov2serologyprofilingandformachinelearningpredictionofneutralizationcapacity