Cargando…

The SARS-CoV-2 Programmed −1 Ribosomal Frameshifting Element Crystal Structure Solved to 2.09 Å Using Chaperone-Assisted RNA Crystallography

[Image: see text] The programmed −1 ribosomal frameshifting element (PFSE) of SARS-CoV-2 is a well conserved structured RNA found in all coronaviruses’ genomes. By adopting a pseudoknot structure in the presence of the ribosome, the PFSE promotes a ribosomal frameshifting event near the stop codon o...

Descripción completa

Detalles Bibliográficos
Autores principales: Roman, Christina, Lewicka, Anna, Koirala, Deepak, Li, Nan-Sheng, Piccirilli, Joseph A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8353986/
https://www.ncbi.nlm.nih.gov/pubmed/34328734
http://dx.doi.org/10.1021/acschembio.1c00324
_version_ 1783736511034818560
author Roman, Christina
Lewicka, Anna
Koirala, Deepak
Li, Nan-Sheng
Piccirilli, Joseph A.
author_facet Roman, Christina
Lewicka, Anna
Koirala, Deepak
Li, Nan-Sheng
Piccirilli, Joseph A.
author_sort Roman, Christina
collection PubMed
description [Image: see text] The programmed −1 ribosomal frameshifting element (PFSE) of SARS-CoV-2 is a well conserved structured RNA found in all coronaviruses’ genomes. By adopting a pseudoknot structure in the presence of the ribosome, the PFSE promotes a ribosomal frameshifting event near the stop codon of the first open reading frame Orf1a during translation of the polyprotein pp1a. Frameshifting results in continuation of pp1a via a new open reading frame, Orf1b, that produces the longer pp1ab polyprotein. Polyproteins pp1a and pp1ab produce nonstructural proteins NSPs 1–10 and NSPs 1–16, respectively, which contribute vital functions during the viral life cycle and must be present in the proper stoichiometry. Both drugs and sequence alterations that affect the stability of the −1 programmed ribosomal frameshifting element disrupt the stoichiometry of the NSPs produced, which compromise viral replication. For this reason, the −1 programmed frameshifting element is considered a promising drug target. Using chaperone assisted RNA crystallography, we successfully crystallized and solved the three-dimensional structure of the PFSE. We observe a three-stem H-type pseudoknot structure with the three stems stacked in a vertical orientation stabilized by two triple base pairs at the stem 1/stem 2 and stem 1/stem 3 junctions. This structure provides a new conformation of PFSE distinct from the bent conformations inferred from midresolution cryo-EM models and provides a high-resolution framework for mechanistic investigations and structure-based drug design.
format Online
Article
Text
id pubmed-8353986
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-83539862021-08-10 The SARS-CoV-2 Programmed −1 Ribosomal Frameshifting Element Crystal Structure Solved to 2.09 Å Using Chaperone-Assisted RNA Crystallography Roman, Christina Lewicka, Anna Koirala, Deepak Li, Nan-Sheng Piccirilli, Joseph A. ACS Chem Biol [Image: see text] The programmed −1 ribosomal frameshifting element (PFSE) of SARS-CoV-2 is a well conserved structured RNA found in all coronaviruses’ genomes. By adopting a pseudoknot structure in the presence of the ribosome, the PFSE promotes a ribosomal frameshifting event near the stop codon of the first open reading frame Orf1a during translation of the polyprotein pp1a. Frameshifting results in continuation of pp1a via a new open reading frame, Orf1b, that produces the longer pp1ab polyprotein. Polyproteins pp1a and pp1ab produce nonstructural proteins NSPs 1–10 and NSPs 1–16, respectively, which contribute vital functions during the viral life cycle and must be present in the proper stoichiometry. Both drugs and sequence alterations that affect the stability of the −1 programmed ribosomal frameshifting element disrupt the stoichiometry of the NSPs produced, which compromise viral replication. For this reason, the −1 programmed frameshifting element is considered a promising drug target. Using chaperone assisted RNA crystallography, we successfully crystallized and solved the three-dimensional structure of the PFSE. We observe a three-stem H-type pseudoknot structure with the three stems stacked in a vertical orientation stabilized by two triple base pairs at the stem 1/stem 2 and stem 1/stem 3 junctions. This structure provides a new conformation of PFSE distinct from the bent conformations inferred from midresolution cryo-EM models and provides a high-resolution framework for mechanistic investigations and structure-based drug design. American Chemical Society 2021-07-30 2021-08-20 /pmc/articles/PMC8353986/ /pubmed/34328734 http://dx.doi.org/10.1021/acschembio.1c00324 Text en © 2021 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Roman, Christina
Lewicka, Anna
Koirala, Deepak
Li, Nan-Sheng
Piccirilli, Joseph A.
The SARS-CoV-2 Programmed −1 Ribosomal Frameshifting Element Crystal Structure Solved to 2.09 Å Using Chaperone-Assisted RNA Crystallography
title The SARS-CoV-2 Programmed −1 Ribosomal Frameshifting Element Crystal Structure Solved to 2.09 Å Using Chaperone-Assisted RNA Crystallography
title_full The SARS-CoV-2 Programmed −1 Ribosomal Frameshifting Element Crystal Structure Solved to 2.09 Å Using Chaperone-Assisted RNA Crystallography
title_fullStr The SARS-CoV-2 Programmed −1 Ribosomal Frameshifting Element Crystal Structure Solved to 2.09 Å Using Chaperone-Assisted RNA Crystallography
title_full_unstemmed The SARS-CoV-2 Programmed −1 Ribosomal Frameshifting Element Crystal Structure Solved to 2.09 Å Using Chaperone-Assisted RNA Crystallography
title_short The SARS-CoV-2 Programmed −1 Ribosomal Frameshifting Element Crystal Structure Solved to 2.09 Å Using Chaperone-Assisted RNA Crystallography
title_sort sars-cov-2 programmed −1 ribosomal frameshifting element crystal structure solved to 2.09 å using chaperone-assisted rna crystallography
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8353986/
https://www.ncbi.nlm.nih.gov/pubmed/34328734
http://dx.doi.org/10.1021/acschembio.1c00324
work_keys_str_mv AT romanchristina thesarscov2programmed1ribosomalframeshiftingelementcrystalstructuresolvedto209ausingchaperoneassistedrnacrystallography
AT lewickaanna thesarscov2programmed1ribosomalframeshiftingelementcrystalstructuresolvedto209ausingchaperoneassistedrnacrystallography
AT koiraladeepak thesarscov2programmed1ribosomalframeshiftingelementcrystalstructuresolvedto209ausingchaperoneassistedrnacrystallography
AT linansheng thesarscov2programmed1ribosomalframeshiftingelementcrystalstructuresolvedto209ausingchaperoneassistedrnacrystallography
AT piccirillijosepha thesarscov2programmed1ribosomalframeshiftingelementcrystalstructuresolvedto209ausingchaperoneassistedrnacrystallography
AT romanchristina sarscov2programmed1ribosomalframeshiftingelementcrystalstructuresolvedto209ausingchaperoneassistedrnacrystallography
AT lewickaanna sarscov2programmed1ribosomalframeshiftingelementcrystalstructuresolvedto209ausingchaperoneassistedrnacrystallography
AT koiraladeepak sarscov2programmed1ribosomalframeshiftingelementcrystalstructuresolvedto209ausingchaperoneassistedrnacrystallography
AT linansheng sarscov2programmed1ribosomalframeshiftingelementcrystalstructuresolvedto209ausingchaperoneassistedrnacrystallography
AT piccirillijosepha sarscov2programmed1ribosomalframeshiftingelementcrystalstructuresolvedto209ausingchaperoneassistedrnacrystallography