Cargando…

Associations between red meat, processed red meat and total red and processed red meat consumption, nutritional adequacy and markers of health and cardio-metabolic diseases in British adults: a cross-sectional analysis using data from UK National Diet and Nutrition Survey

PURPOSE: To determine the association between red meat (RM), processed red meat (PRM) and total red and processed red meat (TRPRM) consumption on nutritional adequacy and markers of health and cardio-metabolic diseases in British adults. METHODS: In this cross-sectional study of adults (19–64 y) fro...

Descripción completa

Detalles Bibliográficos
Autores principales: Hobbs-Grimmer, D. A., Givens, D. I., Lovegrove, J. A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8354925/
https://www.ncbi.nlm.nih.gov/pubmed/33554272
http://dx.doi.org/10.1007/s00394-021-02486-3
Descripción
Sumario:PURPOSE: To determine the association between red meat (RM), processed red meat (PRM) and total red and processed red meat (TRPRM) consumption on nutritional adequacy and markers of health and cardio-metabolic diseases in British adults. METHODS: In this cross-sectional study of adults (19–64 y) from the National Diet and Nutrition Survey (NDNS) (n = 1758), RM and PRM consumption were assessed from 4 day estimated food diaries. Anthropometric measures, blood pressure (BP), pulse pressure (PP), plasma glucose, HbA1c, C-reactive protein, TAG, TC, LDL-C and HDL-C from the NDNS were used. RESULTS: 43% of adults (men 57% and women 31%) consumed more than the 70 g/d TRPRM guidelines. Fewer adults in the highest tertile of TRPRM intake were below lower reference nutrient intakes (LRNIs), particularly for zinc and iron, respectively. In model 3 (controlled for age, energy intake, socioeconomic classification, number of daily cigarettes, BMI, dietary factors), higher RM consumption was associated with being significantly taller (model 3: P-ANCOVA = 0.006; P-T3/T1 = 0.0004) in men and lower diastolic BP (model 3: P-ANCOVA = 0.004; P-T3/T2 = 0.002) in women. Higher PRM in men was associated with significantly higher plasma ferritin concentration (model 3: P-ANCOVA = 0.0001; P-T2/T1 = 0.0001), being taller (P-ANCOVA = 0.019; P-T1/T2 = 0.047, T1/T3 = 0.044), increased body weight (model 3: P-ANCOVA = 0.001; P-T1/T3 = 0.0001), BMI (model 3: P-ANCOVA = 0.007; P-T1/T3 = 0.006) and smaller hip circumference (model 3: P-ANCOVA = 0.006; P-T3/T1 = 0.024; P-T2/T1 = 0.013) and in women significantly higher TC (model 3: P-ANCOVA = 0.020; P-T3/T2 = 0.016), LDL-C (P-ANCOVA = 0.030; P-T3/T2 = 0.025), HbA1c (model 3: P-ANCOVA = 0.0001; P-T2/T1 = 0.001; P-T3/T2 = 0.001) and higher PP (model 3: P-ANCOVA = 0.022; P-T3/T1 = 0.021). Higher PRM consumption was associated with significantly higher BMI and hip circumference in men, and higher TC, LDL-C, HbA1c and PP in women, which was not observed for RM consumption. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00394-021-02486-3.