Cargando…

Iterative single-cell multi-omic integration using online learning

Integrating large single-cell gene expression, chromatin accessibility and DNA methylation datasets requires general and scalable computational approaches. Here we describe online integrative nonnegative matrix factorization (iNMF), an algorithm for integrating large, diverse, and continually arrivi...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Chao, Liu, Jialin, Kriebel, April R., Preissl, Sebastian, Luo, Chongyuan, Castanon, Rosa, Sandoval, Justin, Rivkin, Angeline, Nery, Joseph R., Behrens, Margarita M., Ecker, Joseph R., Ren, Bing, Welch, Joshua D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8355612/
https://www.ncbi.nlm.nih.gov/pubmed/33875866
http://dx.doi.org/10.1038/s41587-021-00867-x
_version_ 1783736797949329408
author Gao, Chao
Liu, Jialin
Kriebel, April R.
Preissl, Sebastian
Luo, Chongyuan
Castanon, Rosa
Sandoval, Justin
Rivkin, Angeline
Nery, Joseph R.
Behrens, Margarita M.
Ecker, Joseph R.
Ren, Bing
Welch, Joshua D.
author_facet Gao, Chao
Liu, Jialin
Kriebel, April R.
Preissl, Sebastian
Luo, Chongyuan
Castanon, Rosa
Sandoval, Justin
Rivkin, Angeline
Nery, Joseph R.
Behrens, Margarita M.
Ecker, Joseph R.
Ren, Bing
Welch, Joshua D.
author_sort Gao, Chao
collection PubMed
description Integrating large single-cell gene expression, chromatin accessibility and DNA methylation datasets requires general and scalable computational approaches. Here we describe online integrative nonnegative matrix factorization (iNMF), an algorithm for integrating large, diverse, and continually arriving single-cell datasets. Our approach scales to arbitrarily large numbers of cells using fixed memory, iteratively incorporates new datasets as they are generated, and allows many users to simultaneously analyze a single copy of a large dataset by streaming it over the internet. Iterative data addition can also be used to map new data to a reference dataset. Comparisons with previous methods indicate that the improvements in efficiency do not sacrifice dataset alignment and cluster preservation performance. We demonstrate the effectiveness of online iNMF by integrating more than a million cells on a standard laptop, integrating large single-cell RNA-seq and spatial transcriptomic datasets, and iteratively constructing a single-cell multi-omic atlas of the mouse motor cortex.
format Online
Article
Text
id pubmed-8355612
institution National Center for Biotechnology Information
language English
publishDate 2021
record_format MEDLINE/PubMed
spelling pubmed-83556122021-10-19 Iterative single-cell multi-omic integration using online learning Gao, Chao Liu, Jialin Kriebel, April R. Preissl, Sebastian Luo, Chongyuan Castanon, Rosa Sandoval, Justin Rivkin, Angeline Nery, Joseph R. Behrens, Margarita M. Ecker, Joseph R. Ren, Bing Welch, Joshua D. Nat Biotechnol Article Integrating large single-cell gene expression, chromatin accessibility and DNA methylation datasets requires general and scalable computational approaches. Here we describe online integrative nonnegative matrix factorization (iNMF), an algorithm for integrating large, diverse, and continually arriving single-cell datasets. Our approach scales to arbitrarily large numbers of cells using fixed memory, iteratively incorporates new datasets as they are generated, and allows many users to simultaneously analyze a single copy of a large dataset by streaming it over the internet. Iterative data addition can also be used to map new data to a reference dataset. Comparisons with previous methods indicate that the improvements in efficiency do not sacrifice dataset alignment and cluster preservation performance. We demonstrate the effectiveness of online iNMF by integrating more than a million cells on a standard laptop, integrating large single-cell RNA-seq and spatial transcriptomic datasets, and iteratively constructing a single-cell multi-omic atlas of the mouse motor cortex. 2021-04-19 2021-08 /pmc/articles/PMC8355612/ /pubmed/33875866 http://dx.doi.org/10.1038/s41587-021-00867-x Text en http://www.nature.com/authors/editorial_policies/license.html#termsUsers may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Gao, Chao
Liu, Jialin
Kriebel, April R.
Preissl, Sebastian
Luo, Chongyuan
Castanon, Rosa
Sandoval, Justin
Rivkin, Angeline
Nery, Joseph R.
Behrens, Margarita M.
Ecker, Joseph R.
Ren, Bing
Welch, Joshua D.
Iterative single-cell multi-omic integration using online learning
title Iterative single-cell multi-omic integration using online learning
title_full Iterative single-cell multi-omic integration using online learning
title_fullStr Iterative single-cell multi-omic integration using online learning
title_full_unstemmed Iterative single-cell multi-omic integration using online learning
title_short Iterative single-cell multi-omic integration using online learning
title_sort iterative single-cell multi-omic integration using online learning
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8355612/
https://www.ncbi.nlm.nih.gov/pubmed/33875866
http://dx.doi.org/10.1038/s41587-021-00867-x
work_keys_str_mv AT gaochao iterativesinglecellmultiomicintegrationusingonlinelearning
AT liujialin iterativesinglecellmultiomicintegrationusingonlinelearning
AT kriebelaprilr iterativesinglecellmultiomicintegrationusingonlinelearning
AT preisslsebastian iterativesinglecellmultiomicintegrationusingonlinelearning
AT luochongyuan iterativesinglecellmultiomicintegrationusingonlinelearning
AT castanonrosa iterativesinglecellmultiomicintegrationusingonlinelearning
AT sandovaljustin iterativesinglecellmultiomicintegrationusingonlinelearning
AT rivkinangeline iterativesinglecellmultiomicintegrationusingonlinelearning
AT neryjosephr iterativesinglecellmultiomicintegrationusingonlinelearning
AT behrensmargaritam iterativesinglecellmultiomicintegrationusingonlinelearning
AT eckerjosephr iterativesinglecellmultiomicintegrationusingonlinelearning
AT renbing iterativesinglecellmultiomicintegrationusingonlinelearning
AT welchjoshuad iterativesinglecellmultiomicintegrationusingonlinelearning