Cargando…
Iterative single-cell multi-omic integration using online learning
Integrating large single-cell gene expression, chromatin accessibility and DNA methylation datasets requires general and scalable computational approaches. Here we describe online integrative nonnegative matrix factorization (iNMF), an algorithm for integrating large, diverse, and continually arrivi...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8355612/ https://www.ncbi.nlm.nih.gov/pubmed/33875866 http://dx.doi.org/10.1038/s41587-021-00867-x |
_version_ | 1783736797949329408 |
---|---|
author | Gao, Chao Liu, Jialin Kriebel, April R. Preissl, Sebastian Luo, Chongyuan Castanon, Rosa Sandoval, Justin Rivkin, Angeline Nery, Joseph R. Behrens, Margarita M. Ecker, Joseph R. Ren, Bing Welch, Joshua D. |
author_facet | Gao, Chao Liu, Jialin Kriebel, April R. Preissl, Sebastian Luo, Chongyuan Castanon, Rosa Sandoval, Justin Rivkin, Angeline Nery, Joseph R. Behrens, Margarita M. Ecker, Joseph R. Ren, Bing Welch, Joshua D. |
author_sort | Gao, Chao |
collection | PubMed |
description | Integrating large single-cell gene expression, chromatin accessibility and DNA methylation datasets requires general and scalable computational approaches. Here we describe online integrative nonnegative matrix factorization (iNMF), an algorithm for integrating large, diverse, and continually arriving single-cell datasets. Our approach scales to arbitrarily large numbers of cells using fixed memory, iteratively incorporates new datasets as they are generated, and allows many users to simultaneously analyze a single copy of a large dataset by streaming it over the internet. Iterative data addition can also be used to map new data to a reference dataset. Comparisons with previous methods indicate that the improvements in efficiency do not sacrifice dataset alignment and cluster preservation performance. We demonstrate the effectiveness of online iNMF by integrating more than a million cells on a standard laptop, integrating large single-cell RNA-seq and spatial transcriptomic datasets, and iteratively constructing a single-cell multi-omic atlas of the mouse motor cortex. |
format | Online Article Text |
id | pubmed-8355612 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-83556122021-10-19 Iterative single-cell multi-omic integration using online learning Gao, Chao Liu, Jialin Kriebel, April R. Preissl, Sebastian Luo, Chongyuan Castanon, Rosa Sandoval, Justin Rivkin, Angeline Nery, Joseph R. Behrens, Margarita M. Ecker, Joseph R. Ren, Bing Welch, Joshua D. Nat Biotechnol Article Integrating large single-cell gene expression, chromatin accessibility and DNA methylation datasets requires general and scalable computational approaches. Here we describe online integrative nonnegative matrix factorization (iNMF), an algorithm for integrating large, diverse, and continually arriving single-cell datasets. Our approach scales to arbitrarily large numbers of cells using fixed memory, iteratively incorporates new datasets as they are generated, and allows many users to simultaneously analyze a single copy of a large dataset by streaming it over the internet. Iterative data addition can also be used to map new data to a reference dataset. Comparisons with previous methods indicate that the improvements in efficiency do not sacrifice dataset alignment and cluster preservation performance. We demonstrate the effectiveness of online iNMF by integrating more than a million cells on a standard laptop, integrating large single-cell RNA-seq and spatial transcriptomic datasets, and iteratively constructing a single-cell multi-omic atlas of the mouse motor cortex. 2021-04-19 2021-08 /pmc/articles/PMC8355612/ /pubmed/33875866 http://dx.doi.org/10.1038/s41587-021-00867-x Text en http://www.nature.com/authors/editorial_policies/license.html#termsUsers may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Gao, Chao Liu, Jialin Kriebel, April R. Preissl, Sebastian Luo, Chongyuan Castanon, Rosa Sandoval, Justin Rivkin, Angeline Nery, Joseph R. Behrens, Margarita M. Ecker, Joseph R. Ren, Bing Welch, Joshua D. Iterative single-cell multi-omic integration using online learning |
title | Iterative single-cell multi-omic integration using online learning |
title_full | Iterative single-cell multi-omic integration using online learning |
title_fullStr | Iterative single-cell multi-omic integration using online learning |
title_full_unstemmed | Iterative single-cell multi-omic integration using online learning |
title_short | Iterative single-cell multi-omic integration using online learning |
title_sort | iterative single-cell multi-omic integration using online learning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8355612/ https://www.ncbi.nlm.nih.gov/pubmed/33875866 http://dx.doi.org/10.1038/s41587-021-00867-x |
work_keys_str_mv | AT gaochao iterativesinglecellmultiomicintegrationusingonlinelearning AT liujialin iterativesinglecellmultiomicintegrationusingonlinelearning AT kriebelaprilr iterativesinglecellmultiomicintegrationusingonlinelearning AT preisslsebastian iterativesinglecellmultiomicintegrationusingonlinelearning AT luochongyuan iterativesinglecellmultiomicintegrationusingonlinelearning AT castanonrosa iterativesinglecellmultiomicintegrationusingonlinelearning AT sandovaljustin iterativesinglecellmultiomicintegrationusingonlinelearning AT rivkinangeline iterativesinglecellmultiomicintegrationusingonlinelearning AT neryjosephr iterativesinglecellmultiomicintegrationusingonlinelearning AT behrensmargaritam iterativesinglecellmultiomicintegrationusingonlinelearning AT eckerjosephr iterativesinglecellmultiomicintegrationusingonlinelearning AT renbing iterativesinglecellmultiomicintegrationusingonlinelearning AT welchjoshuad iterativesinglecellmultiomicintegrationusingonlinelearning |