Cargando…
HIF-1α-Mediated miR-623 Regulates Apoptosis and Inflammatory Responses of Nucleus Pulposus Induced by Oxidative Stress via Targeting TXNIP
Excessive apoptosis and inflammatory responses of nucleus pulposus (NP) cells induced by oxidative stress contribute to intervertebral disc degeneration (IVDD). Though some microRNAs are associated with IVDD, the specific microRNA that can mediate apoptotic and inflammatory responses of NP cells ind...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8355979/ https://www.ncbi.nlm.nih.gov/pubmed/34394829 http://dx.doi.org/10.1155/2021/6389568 |
_version_ | 1783736858094600192 |
---|---|
author | Bao, Xiaogang Wang, Zhenhua Jia, Qi Shen, Sibo Wu, Likang Jiang, Qi Li, Changwei Xu, Guohua |
author_facet | Bao, Xiaogang Wang, Zhenhua Jia, Qi Shen, Sibo Wu, Likang Jiang, Qi Li, Changwei Xu, Guohua |
author_sort | Bao, Xiaogang |
collection | PubMed |
description | Excessive apoptosis and inflammatory responses of nucleus pulposus (NP) cells induced by oxidative stress contribute to intervertebral disc degeneration (IVDD). Though some microRNAs are associated with IVDD, the specific microRNA that can mediate apoptotic and inflammatory responses of NP cells induced by oxidative stress synchronously still needs further identification. Here, we find that microRNA-623 (miR-623) is downregulated in IVDD and its expression is regulated by hypoxia-inducible factor-1α (HIF-1α) under oxidative stress conditions. Mechanistically, HIF-1α is observed to promote miR-623 expression by directly binding to its promoter region (−1,994/−1,987 bp). Functionally, miR-623 is found to work as an intermediator in alleviating apoptosis and inflammatory responses of NP cells induced by oxidative stress via regulating thioredoxin-interacting protein (TXNIP) expression by directly targeting its 3′-untranslated region (3′-UTR). Thus, on elucidating the expression and functional mechanisms of miR-623, our study suggests that miR-623 can be a valuable therapeutic target for treating oxidative stress-induced IVDD. |
format | Online Article Text |
id | pubmed-8355979 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-83559792021-08-12 HIF-1α-Mediated miR-623 Regulates Apoptosis and Inflammatory Responses of Nucleus Pulposus Induced by Oxidative Stress via Targeting TXNIP Bao, Xiaogang Wang, Zhenhua Jia, Qi Shen, Sibo Wu, Likang Jiang, Qi Li, Changwei Xu, Guohua Oxid Med Cell Longev Research Article Excessive apoptosis and inflammatory responses of nucleus pulposus (NP) cells induced by oxidative stress contribute to intervertebral disc degeneration (IVDD). Though some microRNAs are associated with IVDD, the specific microRNA that can mediate apoptotic and inflammatory responses of NP cells induced by oxidative stress synchronously still needs further identification. Here, we find that microRNA-623 (miR-623) is downregulated in IVDD and its expression is regulated by hypoxia-inducible factor-1α (HIF-1α) under oxidative stress conditions. Mechanistically, HIF-1α is observed to promote miR-623 expression by directly binding to its promoter region (−1,994/−1,987 bp). Functionally, miR-623 is found to work as an intermediator in alleviating apoptosis and inflammatory responses of NP cells induced by oxidative stress via regulating thioredoxin-interacting protein (TXNIP) expression by directly targeting its 3′-untranslated region (3′-UTR). Thus, on elucidating the expression and functional mechanisms of miR-623, our study suggests that miR-623 can be a valuable therapeutic target for treating oxidative stress-induced IVDD. Hindawi 2021-08-03 /pmc/articles/PMC8355979/ /pubmed/34394829 http://dx.doi.org/10.1155/2021/6389568 Text en Copyright © 2021 Xiaogang Bao et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Bao, Xiaogang Wang, Zhenhua Jia, Qi Shen, Sibo Wu, Likang Jiang, Qi Li, Changwei Xu, Guohua HIF-1α-Mediated miR-623 Regulates Apoptosis and Inflammatory Responses of Nucleus Pulposus Induced by Oxidative Stress via Targeting TXNIP |
title | HIF-1α-Mediated miR-623 Regulates Apoptosis and Inflammatory Responses of Nucleus Pulposus Induced by Oxidative Stress via Targeting TXNIP |
title_full | HIF-1α-Mediated miR-623 Regulates Apoptosis and Inflammatory Responses of Nucleus Pulposus Induced by Oxidative Stress via Targeting TXNIP |
title_fullStr | HIF-1α-Mediated miR-623 Regulates Apoptosis and Inflammatory Responses of Nucleus Pulposus Induced by Oxidative Stress via Targeting TXNIP |
title_full_unstemmed | HIF-1α-Mediated miR-623 Regulates Apoptosis and Inflammatory Responses of Nucleus Pulposus Induced by Oxidative Stress via Targeting TXNIP |
title_short | HIF-1α-Mediated miR-623 Regulates Apoptosis and Inflammatory Responses of Nucleus Pulposus Induced by Oxidative Stress via Targeting TXNIP |
title_sort | hif-1α-mediated mir-623 regulates apoptosis and inflammatory responses of nucleus pulposus induced by oxidative stress via targeting txnip |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8355979/ https://www.ncbi.nlm.nih.gov/pubmed/34394829 http://dx.doi.org/10.1155/2021/6389568 |
work_keys_str_mv | AT baoxiaogang hif1amediatedmir623regulatesapoptosisandinflammatoryresponsesofnucleuspulposusinducedbyoxidativestressviatargetingtxnip AT wangzhenhua hif1amediatedmir623regulatesapoptosisandinflammatoryresponsesofnucleuspulposusinducedbyoxidativestressviatargetingtxnip AT jiaqi hif1amediatedmir623regulatesapoptosisandinflammatoryresponsesofnucleuspulposusinducedbyoxidativestressviatargetingtxnip AT shensibo hif1amediatedmir623regulatesapoptosisandinflammatoryresponsesofnucleuspulposusinducedbyoxidativestressviatargetingtxnip AT wulikang hif1amediatedmir623regulatesapoptosisandinflammatoryresponsesofnucleuspulposusinducedbyoxidativestressviatargetingtxnip AT jiangqi hif1amediatedmir623regulatesapoptosisandinflammatoryresponsesofnucleuspulposusinducedbyoxidativestressviatargetingtxnip AT lichangwei hif1amediatedmir623regulatesapoptosisandinflammatoryresponsesofnucleuspulposusinducedbyoxidativestressviatargetingtxnip AT xuguohua hif1amediatedmir623regulatesapoptosisandinflammatoryresponsesofnucleuspulposusinducedbyoxidativestressviatargetingtxnip |