Cargando…
GraphDTI: A robust deep learning predictor of drug-target interactions from multiple heterogeneous data
Traditional techniques to identify macromolecular targets for drugs utilize solely the information on a query drug and a putative target. Nonetheless, the mechanisms of action of many drugs depend not only on their binding affinity toward a single protein, but also on the signal transduction through...
Autores principales: | Liu, Guannan, Singha, Manali, Pu, Limeng, Neupane, Prasanga, Feinstein, Joseph, Wu, Hsiao-Chun, Ramanujam, J., Brylinski, Michal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8356453/ https://www.ncbi.nlm.nih.gov/pubmed/34380569 http://dx.doi.org/10.1186/s13321-021-00540-0 |
Ejemplares similares
-
GraphSite: Ligand Binding Site Classification with Deep Graph Learning
por: Shi, Wentao, et al.
Publicado: (2022) -
An integrated network representation of multiple cancer-specific data for graph-based machine learning
por: Pu, Limeng, et al.
Publicado: (2022) -
CancerOmicsNet: a multi-omics network-based approach to anti-cancer drug profiling
por: Pu, Limeng, et al.
Publicado: (2022) -
Pocket2Drug: An Encoder-Decoder Deep Neural Network for the Target-Based Drug Design
por: Shi, Wentao, et al.
Publicado: (2022) -
Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets
por: Feinstein, Wei P., et al.
Publicado: (2015)