Cargando…

Nonphosphorylatable PEA15 mutant inhibits epithelial-mesenchymal transition in triple-negative breast cancer partly through the regulation of IL-8 expression

BACKGROUND: Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype that lacks targeted therapies. Patients with TNBC have a very poor prognosis because the disease often metastasizes. New treatment approaches addressing drivers of metastasis and tumor growth are crucial to impro...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Jihyun, Tacam, Moises J., Chauhan, Gaurav, Cohen, Evan N., Gagliardi, Maria, Iles, Lakesla R., Ueno, Naoto T., Battula, Venkata L., Sohn, Yoo-Kyoung, Wang, Xiaoping, Kim, Hak-Sung, Krishnamurthy, Savitri, Fowlkes, Natalie W., Green, Morgan M., Bartholomeusz, Geoffrey A., Tripathy, Debu, Reuben, James M., Bartholomeusz, Chandra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8357760/
https://www.ncbi.nlm.nih.gov/pubmed/34241740
http://dx.doi.org/10.1007/s10549-021-06316-2
Descripción
Sumario:BACKGROUND: Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype that lacks targeted therapies. Patients with TNBC have a very poor prognosis because the disease often metastasizes. New treatment approaches addressing drivers of metastasis and tumor growth are crucial to improving patient outcomes. Developing targeted gene therapy is thus a high priority for TNBC patients. PEA15 (phosphoprotein enriched in astrocytes, 15 kDa) is known to bind to ERK, preventing ERK from being translocated to the nucleus and hence blocking its activity. The biological function of PEA15 is tightly regulated by its phosphorylation at Ser104 and Ser116. However, the function and impact of phosphorylation status of PEA15 in the regulation of TNBC metastasis and in epithelial-to-mesenchymal transition (EMT) are not well understood. METHODS: We established stable cell lines overexpressing nonphosphorylatable (PEA15-AA) and phospho-mimetic (PEA15-DD) mutants. To dissect specific cellular mechanisms regulated by PEA15 phosphorylation status, we performed RT-PCR immune and metastasis arrays. In vivo mouse models were used to determine the effects of PEA15 phosphorylation on tumor growth and metastasis. RESULTS: We found that the nonphosphorylatable mutant PEA15-AA prevented formation of mammospheres and expression of EMT markers in vitro and decreased tumor growth and lung metastasis in in vivo experiments when compared to control, PEA15-WT and phosphomimetic PEA15-DD. However, phosphomimetic mutant PEA15-DD promoted migration, mesenchymal marker expression, tumorigenesis, and lung metastasis in the mouse model. PEA15-AA-mediated inhibition of breast cancer cell migratory capacity and tumorigenesis was the partial result of decreased expression of interleukin-8 (IL-8). Further, we identified that expression of IL-8 was possibly mediated through one of the ERK downstream molecules, Ets-1. CONCLUSIONS: Our results show that PEA15 phosphorylation status serves as an important regulator for PEA15’s dual role as an oncogene or tumor suppressor and support the potential of PEA15-AA as a therapeutic strategy for treatment of TNBC. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10549-021-06316-2.