Cargando…

Hedgehog/GLI1 Transcriptionally Regulates FANCD2 in Ovarian Tumor Cells: Its Inhibition Induces HR-Deficiency and Synergistic Lethality with PARP Inhibition.

Ovarian cancer (OC) is one of the most lethal type of cancer in women due to a lack of effective targeted therapies and high rates of treatment resistance and disease recurrence. Recently Poly (ADP-ribose) polymerase inhibitors (PARPi) have shown promise as chemotherapeutic agents; however, their ef...

Descripción completa

Detalles Bibliográficos
Autores principales: Mani, Chinnadurai, Tripathi, Kaushlendra, Chaudhary, Sandeep, Somasagara, Ranganatha R., Rocconi, Rodney P., Crasto, Chiquito, Reedy, Mark, Athar, Mohammad, Palle, Komaraiah
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Neoplasia Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8361230/
https://www.ncbi.nlm.nih.gov/pubmed/34380074
http://dx.doi.org/10.1016/j.neo.2021.06.010
Descripción
Sumario:Ovarian cancer (OC) is one of the most lethal type of cancer in women due to a lack of effective targeted therapies and high rates of treatment resistance and disease recurrence. Recently Poly (ADP-ribose) polymerase inhibitors (PARPi) have shown promise as chemotherapeutic agents; however, their efficacy is limited to a small fraction of patients with BRCA mutations. Here we show a novel function for the Hedgehog (Hh) transcription factor Glioma associated protein 1 (GLI1) in regulation of key Fanconi anemia (FA) gene, FANCD2 in OC cells. GLI1 inhibition in HR-proficient OC cells induces HR deficiency (BRCAness), replication stress and synergistic lethality when combined with PARP inhibition. Treatment of OC cells with combination of GLI1 and PARP inhibitors shows enhanced DNA damage, synergy in cytotoxicity, and strong in vivo anticancer responses.