Cargando…
Controlling Catenation in Germanium(I) Chemistry through Hemilability
We present a novel approach for constructing chains of Group 14 metal atoms linked by unsupported metal–metal bonds that exploits hemilabile ligands to generate unsaturated metal sites. The formation/nature of catenated species (oligo‐dimetallynes) can be controlled by the use of (acidic/basic) “pro...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8362110/ https://www.ncbi.nlm.nih.gov/pubmed/33939867 http://dx.doi.org/10.1002/anie.202104643 |
_version_ | 1783738091035426816 |
---|---|
author | Caise, Alexa Griffin, Liam P. Heilmann, Andreas McManus, Caitilín Campos, Jesús Aldridge, Simon |
author_facet | Caise, Alexa Griffin, Liam P. Heilmann, Andreas McManus, Caitilín Campos, Jesús Aldridge, Simon |
author_sort | Caise, Alexa |
collection | PubMed |
description | We present a novel approach for constructing chains of Group 14 metal atoms linked by unsupported metal–metal bonds that exploits hemilabile ligands to generate unsaturated metal sites. The formation/nature of catenated species (oligo‐dimetallynes) can be controlled by the use of (acidic/basic) “protecting groups” and through variation of the ligand scaffold. Reduction of Ar(NiPr2)GeCl (Ar(NiPr2)=2,6‐((i)Pr(2)NCH(2))(2)C(6)H(3))—featuring hemilabile N(i)Pr(2) donors—yields (Ar(NiPr2)Ge)(4) (2), which contains a tetrameric Ge(4) chain. 2 represents a novel type of a linear homo‐catenated Ge(I) compound featuring unsupported E−E bonds. Trapping experiments reveal that a key structural component is the central two‐way Ge=Ge donor‐acceptor bond: reactions with IMe(4) and W(CO)(5)(NMe(3)) give the base‐ or acid‐stabilized digermynes (Ar(NiPr2)Ge(IMe(4)))(2) (4) and (Ar(NiPr2)Ge{W(CO)(5)})(2) (5), respectively. The use of smaller N‐donors leads to stronger Ge‐N interactions and quenching of catenation behaviour: reduction of Ar(NEt2)GeCl gives the digermyne (Ar(NEt2)Ge)(2), while the unsymmetrical system Ar(NEt2)GeGeAr(NiPr2) dimerizes to give tetranuclear (Ar(NEt2)GeGeAr(NiPr2))(2) through aggregation at the N(i)Pr(2)‐ligated Ge(I) centres. |
format | Online Article Text |
id | pubmed-8362110 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-83621102021-08-17 Controlling Catenation in Germanium(I) Chemistry through Hemilability Caise, Alexa Griffin, Liam P. Heilmann, Andreas McManus, Caitilín Campos, Jesús Aldridge, Simon Angew Chem Int Ed Engl Research Articles We present a novel approach for constructing chains of Group 14 metal atoms linked by unsupported metal–metal bonds that exploits hemilabile ligands to generate unsaturated metal sites. The formation/nature of catenated species (oligo‐dimetallynes) can be controlled by the use of (acidic/basic) “protecting groups” and through variation of the ligand scaffold. Reduction of Ar(NiPr2)GeCl (Ar(NiPr2)=2,6‐((i)Pr(2)NCH(2))(2)C(6)H(3))—featuring hemilabile N(i)Pr(2) donors—yields (Ar(NiPr2)Ge)(4) (2), which contains a tetrameric Ge(4) chain. 2 represents a novel type of a linear homo‐catenated Ge(I) compound featuring unsupported E−E bonds. Trapping experiments reveal that a key structural component is the central two‐way Ge=Ge donor‐acceptor bond: reactions with IMe(4) and W(CO)(5)(NMe(3)) give the base‐ or acid‐stabilized digermynes (Ar(NiPr2)Ge(IMe(4)))(2) (4) and (Ar(NiPr2)Ge{W(CO)(5)})(2) (5), respectively. The use of smaller N‐donors leads to stronger Ge‐N interactions and quenching of catenation behaviour: reduction of Ar(NEt2)GeCl gives the digermyne (Ar(NEt2)Ge)(2), while the unsymmetrical system Ar(NEt2)GeGeAr(NiPr2) dimerizes to give tetranuclear (Ar(NEt2)GeGeAr(NiPr2))(2) through aggregation at the N(i)Pr(2)‐ligated Ge(I) centres. John Wiley and Sons Inc. 2021-06-09 2021-07-05 /pmc/articles/PMC8362110/ /pubmed/33939867 http://dx.doi.org/10.1002/anie.202104643 Text en © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Caise, Alexa Griffin, Liam P. Heilmann, Andreas McManus, Caitilín Campos, Jesús Aldridge, Simon Controlling Catenation in Germanium(I) Chemistry through Hemilability |
title | Controlling Catenation in Germanium(I) Chemistry through Hemilability |
title_full | Controlling Catenation in Germanium(I) Chemistry through Hemilability |
title_fullStr | Controlling Catenation in Germanium(I) Chemistry through Hemilability |
title_full_unstemmed | Controlling Catenation in Germanium(I) Chemistry through Hemilability |
title_short | Controlling Catenation in Germanium(I) Chemistry through Hemilability |
title_sort | controlling catenation in germanium(i) chemistry through hemilability |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8362110/ https://www.ncbi.nlm.nih.gov/pubmed/33939867 http://dx.doi.org/10.1002/anie.202104643 |
work_keys_str_mv | AT caisealexa controllingcatenationingermaniumichemistrythroughhemilability AT griffinliamp controllingcatenationingermaniumichemistrythroughhemilability AT heilmannandreas controllingcatenationingermaniumichemistrythroughhemilability AT mcmanuscaitilin controllingcatenationingermaniumichemistrythroughhemilability AT camposjesus controllingcatenationingermaniumichemistrythroughhemilability AT aldridgesimon controllingcatenationingermaniumichemistrythroughhemilability |