Cargando…

Controlling Catenation in Germanium(I) Chemistry through Hemilability

We present a novel approach for constructing chains of Group 14 metal atoms linked by unsupported metal–metal bonds that exploits hemilabile ligands to generate unsaturated metal sites. The formation/nature of catenated species (oligo‐dimetallynes) can be controlled by the use of (acidic/basic) “pro...

Descripción completa

Detalles Bibliográficos
Autores principales: Caise, Alexa, Griffin, Liam P., Heilmann, Andreas, McManus, Caitilín, Campos, Jesús, Aldridge, Simon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8362110/
https://www.ncbi.nlm.nih.gov/pubmed/33939867
http://dx.doi.org/10.1002/anie.202104643
_version_ 1783738091035426816
author Caise, Alexa
Griffin, Liam P.
Heilmann, Andreas
McManus, Caitilín
Campos, Jesús
Aldridge, Simon
author_facet Caise, Alexa
Griffin, Liam P.
Heilmann, Andreas
McManus, Caitilín
Campos, Jesús
Aldridge, Simon
author_sort Caise, Alexa
collection PubMed
description We present a novel approach for constructing chains of Group 14 metal atoms linked by unsupported metal–metal bonds that exploits hemilabile ligands to generate unsaturated metal sites. The formation/nature of catenated species (oligo‐dimetallynes) can be controlled by the use of (acidic/basic) “protecting groups” and through variation of the ligand scaffold. Reduction of Ar(NiPr2)GeCl (Ar(NiPr2)=2,6‐((i)Pr(2)NCH(2))(2)C(6)H(3))—featuring hemilabile N(i)Pr(2) donors—yields (Ar(NiPr2)Ge)(4) (2), which contains a tetrameric Ge(4) chain. 2 represents a novel type of a linear homo‐catenated Ge(I) compound featuring unsupported E−E bonds. Trapping experiments reveal that a key structural component is the central two‐way Ge=Ge donor‐acceptor bond: reactions with IMe(4) and W(CO)(5)(NMe(3)) give the base‐ or acid‐stabilized digermynes (Ar(NiPr2)Ge(IMe(4)))(2) (4) and (Ar(NiPr2)Ge{W(CO)(5)})(2) (5), respectively. The use of smaller N‐donors leads to stronger Ge‐N interactions and quenching of catenation behaviour: reduction of Ar(NEt2)GeCl gives the digermyne (Ar(NEt2)Ge)(2), while the unsymmetrical system Ar(NEt2)GeGeAr(NiPr2) dimerizes to give tetranuclear (Ar(NEt2)GeGeAr(NiPr2))(2) through aggregation at the N(i)Pr(2)‐ligated Ge(I) centres.
format Online
Article
Text
id pubmed-8362110
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-83621102021-08-17 Controlling Catenation in Germanium(I) Chemistry through Hemilability Caise, Alexa Griffin, Liam P. Heilmann, Andreas McManus, Caitilín Campos, Jesús Aldridge, Simon Angew Chem Int Ed Engl Research Articles We present a novel approach for constructing chains of Group 14 metal atoms linked by unsupported metal–metal bonds that exploits hemilabile ligands to generate unsaturated metal sites. The formation/nature of catenated species (oligo‐dimetallynes) can be controlled by the use of (acidic/basic) “protecting groups” and through variation of the ligand scaffold. Reduction of Ar(NiPr2)GeCl (Ar(NiPr2)=2,6‐((i)Pr(2)NCH(2))(2)C(6)H(3))—featuring hemilabile N(i)Pr(2) donors—yields (Ar(NiPr2)Ge)(4) (2), which contains a tetrameric Ge(4) chain. 2 represents a novel type of a linear homo‐catenated Ge(I) compound featuring unsupported E−E bonds. Trapping experiments reveal that a key structural component is the central two‐way Ge=Ge donor‐acceptor bond: reactions with IMe(4) and W(CO)(5)(NMe(3)) give the base‐ or acid‐stabilized digermynes (Ar(NiPr2)Ge(IMe(4)))(2) (4) and (Ar(NiPr2)Ge{W(CO)(5)})(2) (5), respectively. The use of smaller N‐donors leads to stronger Ge‐N interactions and quenching of catenation behaviour: reduction of Ar(NEt2)GeCl gives the digermyne (Ar(NEt2)Ge)(2), while the unsymmetrical system Ar(NEt2)GeGeAr(NiPr2) dimerizes to give tetranuclear (Ar(NEt2)GeGeAr(NiPr2))(2) through aggregation at the N(i)Pr(2)‐ligated Ge(I) centres. John Wiley and Sons Inc. 2021-06-09 2021-07-05 /pmc/articles/PMC8362110/ /pubmed/33939867 http://dx.doi.org/10.1002/anie.202104643 Text en © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Caise, Alexa
Griffin, Liam P.
Heilmann, Andreas
McManus, Caitilín
Campos, Jesús
Aldridge, Simon
Controlling Catenation in Germanium(I) Chemistry through Hemilability
title Controlling Catenation in Germanium(I) Chemistry through Hemilability
title_full Controlling Catenation in Germanium(I) Chemistry through Hemilability
title_fullStr Controlling Catenation in Germanium(I) Chemistry through Hemilability
title_full_unstemmed Controlling Catenation in Germanium(I) Chemistry through Hemilability
title_short Controlling Catenation in Germanium(I) Chemistry through Hemilability
title_sort controlling catenation in germanium(i) chemistry through hemilability
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8362110/
https://www.ncbi.nlm.nih.gov/pubmed/33939867
http://dx.doi.org/10.1002/anie.202104643
work_keys_str_mv AT caisealexa controllingcatenationingermaniumichemistrythroughhemilability
AT griffinliamp controllingcatenationingermaniumichemistrythroughhemilability
AT heilmannandreas controllingcatenationingermaniumichemistrythroughhemilability
AT mcmanuscaitilin controllingcatenationingermaniumichemistrythroughhemilability
AT camposjesus controllingcatenationingermaniumichemistrythroughhemilability
AT aldridgesimon controllingcatenationingermaniumichemistrythroughhemilability