Cargando…
An Alternative Data Transformation Approach for ADA Cut Point Determination: Why Not Use a Weibull Transformation?
The testing of protein drug candidates for inducing the generation of anti-drug antibodies (ADA) plays a fundamental role in drug development. The basis of the testing strategy includes a screening assay followed by a confirmatory test. Screening assay cut points (CP) are calculated mainly based on...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8363525/ https://www.ncbi.nlm.nih.gov/pubmed/34389881 http://dx.doi.org/10.1208/s12248-021-00625-6 |
Sumario: | The testing of protein drug candidates for inducing the generation of anti-drug antibodies (ADA) plays a fundamental role in drug development. The basis of the testing strategy includes a screening assay followed by a confirmatory test. Screening assay cut points (CP) are calculated mainly based on two approaches, either non-parametric, when the data set does not appear normally distributed, or parametric, in the case of a normal distribution. A normal distribution of data is preferred and may be achieved after outlier exclusion and, if necessary, transformation of the data. The authors present a Weibull transformation and a comparison with a decision tree-based approach that was tested on 10 data sets (healthy human volunteer matrix, different projects). Emphasis is placed on a transformation calculation that can be easily reproduced to make it accessible to non-mathematicians. The cut point value and the effect on the false positive rate as well as the number of excluded samples of both methods are compared. |
---|