Cargando…
Structural determinants and distribution of phosphate specificity in ribonucleotide reductases
Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to the corresponding deoxyribonucleotides, the building blocks of DNA. RNRs are specific for either ribonucleoside diphosphates or triphosphates as substrates. As far as is known, oxygen-dependent class I RNRs (NrdAB) all red...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8365446/ https://www.ncbi.nlm.nih.gov/pubmed/34314684 http://dx.doi.org/10.1016/j.jbc.2021.101008 |
_version_ | 1783738710026616832 |
---|---|
author | Schell, Eugen Nouairia, Ghada Steiner, Elisabeth Weber, Niclas Lundin, Daniel Loderer, Christoph |
author_facet | Schell, Eugen Nouairia, Ghada Steiner, Elisabeth Weber, Niclas Lundin, Daniel Loderer, Christoph |
author_sort | Schell, Eugen |
collection | PubMed |
description | Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to the corresponding deoxyribonucleotides, the building blocks of DNA. RNRs are specific for either ribonucleoside diphosphates or triphosphates as substrates. As far as is known, oxygen-dependent class I RNRs (NrdAB) all reduce ribonucleoside diphosphates, and oxygen-sensitive class III RNRs (NrdD) are all ribonucleoside triphosphate reducers, whereas the adenosylcobalamin-dependent class II (NrdJ) contains both ribonucleoside diphosphate and triphosphate reducers. However, it is unknown how this specificity is conveyed by the active site of the enzymes and how this feature developed in RNR evolution. By structural comparison of the active sites in different RNRs, we identified the apical loop of the phosphate-binding site as a potential structural determinant of substrate specificity. Grafting two residues from this loop from a diphosphate- to a triphosphate-specific RNR caused a change in preference from ribonucleoside triphosphate to diphosphate substrates in a class II model enzyme, confirming them as the structural determinants of phosphate specificity. The investigation of the phylogenetic distribution of this motif in class II RNRs yielded a likely monophyletic clade with the diphosphate-defining motif. This indicates a single evolutionary-split event early in NrdJ evolution in which diphosphate specificity developed from the earlier triphosphate specificity. For those interesting cases where organisms contain more than one nrdJ gene, we observed a preference for encoding enzymes with diverse phosphate specificities, suggesting that this varying phosphate specificity confers a selective advantage. |
format | Online Article Text |
id | pubmed-8365446 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-83654462021-08-23 Structural determinants and distribution of phosphate specificity in ribonucleotide reductases Schell, Eugen Nouairia, Ghada Steiner, Elisabeth Weber, Niclas Lundin, Daniel Loderer, Christoph J Biol Chem Research Article Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to the corresponding deoxyribonucleotides, the building blocks of DNA. RNRs are specific for either ribonucleoside diphosphates or triphosphates as substrates. As far as is known, oxygen-dependent class I RNRs (NrdAB) all reduce ribonucleoside diphosphates, and oxygen-sensitive class III RNRs (NrdD) are all ribonucleoside triphosphate reducers, whereas the adenosylcobalamin-dependent class II (NrdJ) contains both ribonucleoside diphosphate and triphosphate reducers. However, it is unknown how this specificity is conveyed by the active site of the enzymes and how this feature developed in RNR evolution. By structural comparison of the active sites in different RNRs, we identified the apical loop of the phosphate-binding site as a potential structural determinant of substrate specificity. Grafting two residues from this loop from a diphosphate- to a triphosphate-specific RNR caused a change in preference from ribonucleoside triphosphate to diphosphate substrates in a class II model enzyme, confirming them as the structural determinants of phosphate specificity. The investigation of the phylogenetic distribution of this motif in class II RNRs yielded a likely monophyletic clade with the diphosphate-defining motif. This indicates a single evolutionary-split event early in NrdJ evolution in which diphosphate specificity developed from the earlier triphosphate specificity. For those interesting cases where organisms contain more than one nrdJ gene, we observed a preference for encoding enzymes with diverse phosphate specificities, suggesting that this varying phosphate specificity confers a selective advantage. American Society for Biochemistry and Molecular Biology 2021-07-24 /pmc/articles/PMC8365446/ /pubmed/34314684 http://dx.doi.org/10.1016/j.jbc.2021.101008 Text en © 2021 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Article Schell, Eugen Nouairia, Ghada Steiner, Elisabeth Weber, Niclas Lundin, Daniel Loderer, Christoph Structural determinants and distribution of phosphate specificity in ribonucleotide reductases |
title | Structural determinants and distribution of phosphate specificity in ribonucleotide reductases |
title_full | Structural determinants and distribution of phosphate specificity in ribonucleotide reductases |
title_fullStr | Structural determinants and distribution of phosphate specificity in ribonucleotide reductases |
title_full_unstemmed | Structural determinants and distribution of phosphate specificity in ribonucleotide reductases |
title_short | Structural determinants and distribution of phosphate specificity in ribonucleotide reductases |
title_sort | structural determinants and distribution of phosphate specificity in ribonucleotide reductases |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8365446/ https://www.ncbi.nlm.nih.gov/pubmed/34314684 http://dx.doi.org/10.1016/j.jbc.2021.101008 |
work_keys_str_mv | AT schelleugen structuraldeterminantsanddistributionofphosphatespecificityinribonucleotidereductases AT nouairiaghada structuraldeterminantsanddistributionofphosphatespecificityinribonucleotidereductases AT steinerelisabeth structuraldeterminantsanddistributionofphosphatespecificityinribonucleotidereductases AT weberniclas structuraldeterminantsanddistributionofphosphatespecificityinribonucleotidereductases AT lundindaniel structuraldeterminantsanddistributionofphosphatespecificityinribonucleotidereductases AT lodererchristoph structuraldeterminantsanddistributionofphosphatespecificityinribonucleotidereductases |