Cargando…

ceRNA regulatory network of FIH inhibitor as a radioprotector for gastrointestinal toxicity by activating the HIF-1 pathway

Given the relentless renewal ability of intestinal crypt-base stem cells, small intestine in the gastrointestinal (GI) tract is more vulnerable to radiation-induced disruption. Through promoting epithelial integrity and reducing intracellular reactive oxygen species (ROS) levels, hypoxia-inducible f...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Yu-wei, Meng, Xin, Meng, Yuan-yuan, Tang, Hai-kang, Cheng, Ming-hui, Zhang, Zi-qi, Xu, Wen-qing, Long, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Gene & Cell Therapy 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8368776/
https://www.ncbi.nlm.nih.gov/pubmed/34458003
http://dx.doi.org/10.1016/j.omtn.2021.05.008
Descripción
Sumario:Given the relentless renewal ability of intestinal crypt-base stem cells, small intestine in the gastrointestinal (GI) tract is more vulnerable to radiation-induced disruption. Through promoting epithelial integrity and reducing intracellular reactive oxygen species (ROS) levels, hypoxia-inducible factors (HIFs) have been proved to exhibit radioprotective effects in the GI tract. Therefore, enhancing stability or transcriptional activity of HIFs might be a therapeutic strategy for developing radioprotectors. Factor inhibiting HIF (FIH or HIF-1AN) can hamper transcriptional capacity of HIF-1α via interacting with Asn803 in its C-terminal domain. Previously, we discovered promoting HIF-1α transcriptional activity in vitro by FIH inhibitor-N-oxalyl-D-phenylalanine (NOFD) exerts radioprotection on cells. However, the radioprotective effect of FIH inhibitor on the GI tract and its competing endogenous RNA (ceRNA) regulatory network from the FIH/HIF axis has never been addressed. Here we verified radioprotection of NOFD for the GI tract by an animal model and performed whole-transcriptome analysis to fully elucidate the radioprotective mechanism from the FIH/HIF axis against GI syndrome. We identified two novel circular RNAs (circRNAs) (circRNA_2909 and circRNA_0323) and two long non-coding RNAs (lncRNAs) (NONMMUT140549.1 and NONMMUT148249.1) that promote expression of HIF1A and NOS2 in the HIF-1 pathway by sponging microRNAs (miRNAs), especially mmu-miR-92a-1-5p. The de-repression of HIF-1α transcriptional capacity by inhibiting FIH proteomic activity suggests a new therapeutic strategy in alleviating radiation-induced GI syndrome.