Cargando…
ceRNA regulatory network of FIH inhibitor as a radioprotector for gastrointestinal toxicity by activating the HIF-1 pathway
Given the relentless renewal ability of intestinal crypt-base stem cells, small intestine in the gastrointestinal (GI) tract is more vulnerable to radiation-induced disruption. Through promoting epithelial integrity and reducing intracellular reactive oxygen species (ROS) levels, hypoxia-inducible f...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8368776/ https://www.ncbi.nlm.nih.gov/pubmed/34458003 http://dx.doi.org/10.1016/j.omtn.2021.05.008 |
Sumario: | Given the relentless renewal ability of intestinal crypt-base stem cells, small intestine in the gastrointestinal (GI) tract is more vulnerable to radiation-induced disruption. Through promoting epithelial integrity and reducing intracellular reactive oxygen species (ROS) levels, hypoxia-inducible factors (HIFs) have been proved to exhibit radioprotective effects in the GI tract. Therefore, enhancing stability or transcriptional activity of HIFs might be a therapeutic strategy for developing radioprotectors. Factor inhibiting HIF (FIH or HIF-1AN) can hamper transcriptional capacity of HIF-1α via interacting with Asn803 in its C-terminal domain. Previously, we discovered promoting HIF-1α transcriptional activity in vitro by FIH inhibitor-N-oxalyl-D-phenylalanine (NOFD) exerts radioprotection on cells. However, the radioprotective effect of FIH inhibitor on the GI tract and its competing endogenous RNA (ceRNA) regulatory network from the FIH/HIF axis has never been addressed. Here we verified radioprotection of NOFD for the GI tract by an animal model and performed whole-transcriptome analysis to fully elucidate the radioprotective mechanism from the FIH/HIF axis against GI syndrome. We identified two novel circular RNAs (circRNAs) (circRNA_2909 and circRNA_0323) and two long non-coding RNAs (lncRNAs) (NONMMUT140549.1 and NONMMUT148249.1) that promote expression of HIF1A and NOS2 in the HIF-1 pathway by sponging microRNAs (miRNAs), especially mmu-miR-92a-1-5p. The de-repression of HIF-1α transcriptional capacity by inhibiting FIH proteomic activity suggests a new therapeutic strategy in alleviating radiation-induced GI syndrome. |
---|