Cargando…

Efficacy of a combination therapy targeting CDK4/6 and autophagy in a mouse xenograft model of t(8;21) acute myeloid leukemia

One of the most frequent cytogenetic abnormalities in acute myeloid leukemia (AML) is t(8;21). Although patients with t(8;21) AML have a more favorable prognosis than other cytogenetic subgroups, relapse is still common and novel therapeutic approaches are needed. A recent study showed that t(8;21)...

Descripción completa

Detalles Bibliográficos
Autores principales: Matsuo, Hidemasa, Nakatani, Kana, Harata, Yutarou, Higashitani, Moe, Ito, Yuri, Inagami, Aina, Noura, Mina, Nakahata, Tatsutoshi, Adachi, Souichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8371187/
https://www.ncbi.nlm.nih.gov/pubmed/34430715
http://dx.doi.org/10.1016/j.bbrep.2021.101099
Descripción
Sumario:One of the most frequent cytogenetic abnormalities in acute myeloid leukemia (AML) is t(8;21). Although patients with t(8;21) AML have a more favorable prognosis than other cytogenetic subgroups, relapse is still common and novel therapeutic approaches are needed. A recent study showed that t(8;21) AML is characterized by CCND2 deregulation and that co-inhibition of CDK4/6 and autophagy induces apoptosis in t(8;21) AML cells. In this study, we examined the in vivo effects of co-inhibiting CDK4/6 and autophagy. We used a mouse model in which t(8;21)-positive Kasumi-1 cells were subcutaneously inoculated into NOD/Shi-scid IL2Rg(null) mice. The mice were treated with the autophagy inhibitor chloroquine (CQ), a CDK4/6 inhibitor (either abemaciclib or palbociclib), or a CDK4/6 inhibitor plus CQ. After 20 days of treatment, tumor volume was measured, and immunostaining and transmission electron microscopy observations were performed. There was no change in tumor growth in CQ-treated mice. However, mice treated with a CDK4/6 inhibitor plus CQ had significantly less tumor growth than mice treated with a CDK4/6 inhibitor alone. CDK4/6 inhibitor treatment increased the formation of autophagosomes. The number of single-strand DNA-positive (apoptotic) cells was significantly higher in the tumors of mice treated with a CDK4/6 inhibitor plus CQ than in mice treated with either CQ or a CDK4/6 inhibitor. These results show that CDK4/6 inhibition induces autophagy, and that co-inhibition of CDK4/6 and autophagy induces apoptosis in t(8;21) AML cells in vivo. The results suggest that inhibiting CDK4/6 and autophagy could be a novel and promising therapeutic strategy in t(8;21) AML.