Cargando…

Towards a global investigation of transcriptomic signatures through co-expression networks and pathway knowledge for the identification of disease mechanisms

We attempt to address a key question in the joint analysis of transcriptomic data: can we correlate the patterns we observe in transcriptomic datasets to known interactions and pathway knowledge to broaden our understanding of disease pathophysiology? We present a systematic approach that sheds ligh...

Descripción completa

Detalles Bibliográficos
Autores principales: Figueiredo, Rebeca Queiroz, Raschka, Tamara, Kodamullil, Alpha Tom, Hofmann-Apitius, Martin, Mubeen, Sarah, Domingo-Fernández, Daniel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8373148/
https://www.ncbi.nlm.nih.gov/pubmed/34197603
http://dx.doi.org/10.1093/nar/gkab556
Descripción
Sumario:We attempt to address a key question in the joint analysis of transcriptomic data: can we correlate the patterns we observe in transcriptomic datasets to known interactions and pathway knowledge to broaden our understanding of disease pathophysiology? We present a systematic approach that sheds light on the patterns observed in hundreds of transcriptomic datasets from over sixty indications by using pathways and molecular interactions as a template. Our analysis employs transcriptomic datasets to construct dozens of disease specific co-expression networks, alongside a human protein-protein interactome network. Leveraging the interoperability between these two network templates, we explore patterns both common and particular to these diseases on three different levels. Firstly, at the node-level, we identify most and least common proteins across diseases and evaluate their consistency against the interactome as a proxy for their prevalence in the scientific literature. Secondly, we overlay both network templates to analyze common correlations and interactions across diseases at the edge-level. Thirdly, we explore the similarity between patterns observed at the disease-level and pathway knowledge to identify signatures associated with specific diseases and indication areas. Finally, we present a case scenario in schizophrenia, where we show how our approach can be used to investigate disease pathophysiology.