Cargando…
Improving fragment-based ab initio protein structure assembly using low-accuracy contact-map predictions
Sequence-based contact prediction has shown considerable promise in assisting non-homologous structure modeling, but it often requires many homologous sequences and a sufficient number of correct contacts to achieve correct folds. Here, we developed a method, C-QUARK, that integrates multiple deep-l...
Autores principales: | Mortuza, S. M., Zheng, Wei, Zhang, Chengxin, Li, Yang, Pearce, Robin, Zhang, Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8373938/ https://www.ncbi.nlm.nih.gov/pubmed/34408149 http://dx.doi.org/10.1038/s41467-021-25316-w |
Ejemplares similares
-
Fueling ab initio folding with marine metagenomics enables structure and function predictions of new protein families
por: Wang, Yan, et al.
Publicado: (2019) -
Deep learning geometrical potential for high-accuracy ab initio protein structure prediction
por: Li, Yang, et al.
Publicado: (2022) -
Detecting distant-homology protein structures by aligning deep neural-network based contact maps
por: Zheng, Wei, et al.
Publicado: (2019) -
Integrating end-to-end learning with deep geometrical potentials for ab initio RNA structure prediction
por: Li, Yang, et al.
Publicado: (2023) -
Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulations
por: Zheng, Wei, et al.
Publicado: (2021)