Cargando…
Identifying SME customers from click feedback on mobile banking apps: Supervised and semi-supervised approaches
Nowadays, the banking industry has moved from traditional branch services into mobile banking applications or apps. Using customer segmentation, banks can obtain more insights and better understand their customers' lifestyle and their behavior. In this work, we described a method to classify mo...
Autores principales: | Tungjitnob, Suchat, Pasupa, Kitsuchart, Suntisrivaraporn, Boontawee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8379470/ https://www.ncbi.nlm.nih.gov/pubmed/34458608 http://dx.doi.org/10.1016/j.heliyon.2021.e07761 |
Ejemplares similares
-
Generative Adversarial Training for Supervised and Semi-supervised Learning
por: Wang, Xianmin, et al.
Publicado: (2022) -
Semi-supervised learning /
Publicado: (2010) -
Modelling the trident SME-bank relationship
por: Boulanouar, Zakaria, et al.
Publicado: (2023) -
Virtual screening by a new Clustering-based Weighted Similarity Extreme Learning Machine approach
por: Pasupa, Kitsuchart, et al.
Publicado: (2018) -
Supervised, semi-supervised and unsupervised inference of gene regulatory networks
por: Maetschke, Stefan R., et al.
Publicado: (2014)