Cargando…
Effects of ocean acidification on the growth and biochemical composition of a green alga (Ulva fasciata) and its associated microbiota
In marine ecosystems, fluctuations in surface-seawater carbon dioxide (CO(2)), significantly influence the whole metabolism of marine algae, especially during the early stages of macroalgal development. In this study, the response of the green alga Ulva fasciata for elevating ocean acidification was...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8381011/ https://www.ncbi.nlm.nih.gov/pubmed/34466088 http://dx.doi.org/10.1016/j.sjbs.2021.05.029 |
Sumario: | In marine ecosystems, fluctuations in surface-seawater carbon dioxide (CO(2)), significantly influence the whole metabolism of marine algae, especially during the early stages of macroalgal development. In this study, the response of the green alga Ulva fasciata for elevating ocean acidification was investigated using four levels of pCO(2) ~ 280, 550, 750 and 1050 µatm. Maximum growth rate (6.6% day(−1)), protein (32.43 %DW) and pigment (2.9 mg/g) accumulation were observed at pCO(2)-550 with an increase of ~2-fold compared to control. On the other hand, lipid and carbohydrate contents recorded their maximum production (4.23 and 46.96 %DW, respectively) at pCO(2)-750 while control showed 3.70 and 42.37 %DW, respectively. SDS-PAGE showed the presence of unique bands in response to pCO(2,) especially at 550 µatm. Dominant associated bacteria was shifted from Halomonas hydrothermalis of control to Vibrio toranzoniae at pCO(2)-1050. These findings suggest that ocean acidification at 550 µatm might impose noticeable effects on growth, protein, pigments, and protein profile of U. fasciata, which could be a good source for fish farming. While, pCO(2)-750 was recommended for energetic purpose, due to its high lipid and carbohydrate contents. |
---|