Cargando…
Following in Emil Fischer’s Footsteps: A Site-Selective Probe of Glucose Acid–Base Chemistry
[Image: see text] Liquid-jet photoelectron spectroscopy was applied to determine the first acid dissociation constant (pK(a)) of aqueous-phase glucose while simultaneously identifying the spectroscopic signature of the respective deprotonation site. Valence spectra from solutions at pH values below...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8381351/ https://www.ncbi.nlm.nih.gov/pubmed/34328745 http://dx.doi.org/10.1021/acs.jpca.1c04695 |
_version_ | 1783741346275655680 |
---|---|
author | Malerz, Sebastian Mudryk, Karen Tomaník, Lukáš Stemer, Dominik Hergenhahn, Uwe Buttersack, Tillmann Trinter, Florian Seidel, Robert Quevedo, Wilson Goy, Claudia Wilkinson, Iain Thürmer, Stephan Slavíček, Petr Winter, Bernd |
author_facet | Malerz, Sebastian Mudryk, Karen Tomaník, Lukáš Stemer, Dominik Hergenhahn, Uwe Buttersack, Tillmann Trinter, Florian Seidel, Robert Quevedo, Wilson Goy, Claudia Wilkinson, Iain Thürmer, Stephan Slavíček, Petr Winter, Bernd |
author_sort | Malerz, Sebastian |
collection | PubMed |
description | [Image: see text] Liquid-jet photoelectron spectroscopy was applied to determine the first acid dissociation constant (pK(a)) of aqueous-phase glucose while simultaneously identifying the spectroscopic signature of the respective deprotonation site. Valence spectra from solutions at pH values below and above the first pK(a) reveal a change in glucose’s lowest ionization energy upon the deprotonation of neutral glucose and the subsequent emergence of its anionic counterpart. Site-specific insights into the solution-pH-dependent molecular structure changes are also shown to be accessible via C 1s photoelectron spectroscopy. The spectra reveal a considerably lower C 1s binding energy of the carbon site associated with the deprotonated hydroxyl group. The occurrence of photoelectron spectral fingerprints of cyclic and linear glucose prior to and upon deprotonation are also discussed. The experimental data are interpreted with the aid of electronic structure calculations. Our findings highlight the potential of liquid-jet photoelectron spectroscopy to act as a site-selective probe of the molecular structures that underpin the acid–base chemistry of polyprotic systems with relevance to environmental chemistry and biochemistry. |
format | Online Article Text |
id | pubmed-8381351 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-83813512021-08-31 Following in Emil Fischer’s Footsteps: A Site-Selective Probe of Glucose Acid–Base Chemistry Malerz, Sebastian Mudryk, Karen Tomaník, Lukáš Stemer, Dominik Hergenhahn, Uwe Buttersack, Tillmann Trinter, Florian Seidel, Robert Quevedo, Wilson Goy, Claudia Wilkinson, Iain Thürmer, Stephan Slavíček, Petr Winter, Bernd J Phys Chem A [Image: see text] Liquid-jet photoelectron spectroscopy was applied to determine the first acid dissociation constant (pK(a)) of aqueous-phase glucose while simultaneously identifying the spectroscopic signature of the respective deprotonation site. Valence spectra from solutions at pH values below and above the first pK(a) reveal a change in glucose’s lowest ionization energy upon the deprotonation of neutral glucose and the subsequent emergence of its anionic counterpart. Site-specific insights into the solution-pH-dependent molecular structure changes are also shown to be accessible via C 1s photoelectron spectroscopy. The spectra reveal a considerably lower C 1s binding energy of the carbon site associated with the deprotonated hydroxyl group. The occurrence of photoelectron spectral fingerprints of cyclic and linear glucose prior to and upon deprotonation are also discussed. The experimental data are interpreted with the aid of electronic structure calculations. Our findings highlight the potential of liquid-jet photoelectron spectroscopy to act as a site-selective probe of the molecular structures that underpin the acid–base chemistry of polyprotic systems with relevance to environmental chemistry and biochemistry. American Chemical Society 2021-07-30 2021-08-19 /pmc/articles/PMC8381351/ /pubmed/34328745 http://dx.doi.org/10.1021/acs.jpca.1c04695 Text en © 2021 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Malerz, Sebastian Mudryk, Karen Tomaník, Lukáš Stemer, Dominik Hergenhahn, Uwe Buttersack, Tillmann Trinter, Florian Seidel, Robert Quevedo, Wilson Goy, Claudia Wilkinson, Iain Thürmer, Stephan Slavíček, Petr Winter, Bernd Following in Emil Fischer’s Footsteps: A Site-Selective Probe of Glucose Acid–Base Chemistry |
title | Following in Emil Fischer’s Footsteps: A Site-Selective
Probe of Glucose Acid–Base Chemistry |
title_full | Following in Emil Fischer’s Footsteps: A Site-Selective
Probe of Glucose Acid–Base Chemistry |
title_fullStr | Following in Emil Fischer’s Footsteps: A Site-Selective
Probe of Glucose Acid–Base Chemistry |
title_full_unstemmed | Following in Emil Fischer’s Footsteps: A Site-Selective
Probe of Glucose Acid–Base Chemistry |
title_short | Following in Emil Fischer’s Footsteps: A Site-Selective
Probe of Glucose Acid–Base Chemistry |
title_sort | following in emil fischer’s footsteps: a site-selective
probe of glucose acid–base chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8381351/ https://www.ncbi.nlm.nih.gov/pubmed/34328745 http://dx.doi.org/10.1021/acs.jpca.1c04695 |
work_keys_str_mv | AT malerzsebastian followinginemilfischersfootstepsasiteselectiveprobeofglucoseacidbasechemistry AT mudrykkaren followinginemilfischersfootstepsasiteselectiveprobeofglucoseacidbasechemistry AT tomaniklukas followinginemilfischersfootstepsasiteselectiveprobeofglucoseacidbasechemistry AT stemerdominik followinginemilfischersfootstepsasiteselectiveprobeofglucoseacidbasechemistry AT hergenhahnuwe followinginemilfischersfootstepsasiteselectiveprobeofglucoseacidbasechemistry AT buttersacktillmann followinginemilfischersfootstepsasiteselectiveprobeofglucoseacidbasechemistry AT trinterflorian followinginemilfischersfootstepsasiteselectiveprobeofglucoseacidbasechemistry AT seidelrobert followinginemilfischersfootstepsasiteselectiveprobeofglucoseacidbasechemistry AT quevedowilson followinginemilfischersfootstepsasiteselectiveprobeofglucoseacidbasechemistry AT goyclaudia followinginemilfischersfootstepsasiteselectiveprobeofglucoseacidbasechemistry AT wilkinsoniain followinginemilfischersfootstepsasiteselectiveprobeofglucoseacidbasechemistry AT thurmerstephan followinginemilfischersfootstepsasiteselectiveprobeofglucoseacidbasechemistry AT slavicekpetr followinginemilfischersfootstepsasiteselectiveprobeofglucoseacidbasechemistry AT winterbernd followinginemilfischersfootstepsasiteselectiveprobeofglucoseacidbasechemistry |