Cargando…

Non-β-Lactam Allosteric Inhibitors Target Methicillin-Resistant Staphylococcus aureus: An In Silico Drug Discovery Study

Penicillin-binding proteins (PBPs) catalyze the final stages for peptidoglycan cell-wall bio-synthesis. Mutations in the PBP2a subunit can attenuate β-lactam antibiotic activity, resulting in unimpeded cell-wall formation and methicillin-resistant Staphylococcus aureus (MRSA). A double mutation in P...

Descripción completa

Detalles Bibliográficos
Autores principales: Ibrahim, Mahmoud A. A., Abdeljawaad, Khlood A. A., Abdelrahman, Alaa H. M., Alzahrani, Othman R., Alshabrmi, Fahad M., Khalaf, Esraa, Moustafa, Mahmoud F., Alrumaihi, Faris, Allemailem, Khaled S., Soliman, Mahmoud E. S., Paré, Paul W., Hegazy, Mohamed-Elamir F., Atia, Mohamed A. M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8388891/
https://www.ncbi.nlm.nih.gov/pubmed/34438984
http://dx.doi.org/10.3390/antibiotics10080934
_version_ 1783742735415508992
author Ibrahim, Mahmoud A. A.
Abdeljawaad, Khlood A. A.
Abdelrahman, Alaa H. M.
Alzahrani, Othman R.
Alshabrmi, Fahad M.
Khalaf, Esraa
Moustafa, Mahmoud F.
Alrumaihi, Faris
Allemailem, Khaled S.
Soliman, Mahmoud E. S.
Paré, Paul W.
Hegazy, Mohamed-Elamir F.
Atia, Mohamed A. M.
author_facet Ibrahim, Mahmoud A. A.
Abdeljawaad, Khlood A. A.
Abdelrahman, Alaa H. M.
Alzahrani, Othman R.
Alshabrmi, Fahad M.
Khalaf, Esraa
Moustafa, Mahmoud F.
Alrumaihi, Faris
Allemailem, Khaled S.
Soliman, Mahmoud E. S.
Paré, Paul W.
Hegazy, Mohamed-Elamir F.
Atia, Mohamed A. M.
author_sort Ibrahim, Mahmoud A. A.
collection PubMed
description Penicillin-binding proteins (PBPs) catalyze the final stages for peptidoglycan cell-wall bio-synthesis. Mutations in the PBP2a subunit can attenuate β-lactam antibiotic activity, resulting in unimpeded cell-wall formation and methicillin-resistant Staphylococcus aureus (MRSA). A double mutation in PBP2a (i.e., N146K and E150K) is resistant to β-lactam inhibitors; however, (E)-3-(2-(4-cyanostyryl)-4-oxoquinazolin-3(4H)-yl) benzoic acid (QNZ), a heterocyclic antibiotic devoid of a β-lactam ring, interacts non-covalently with PBP2a allosteric site and inhibits PBP enzymatic activity. In the search for novel inhibitors that target this PBP2a allosteric site in acidic medium, an in silico screening was performed. Chemical databases including eMolecules, ChEMBL, and ChEBI were virtually screened for candidate inhibitors with a physicochemical similarity to QNZ. PBP2a binding affinities from the screening were calculated based on molecular docking with co-crystallized ligand QNZ serving as a reference. Molecular minimization calculations were performed for inhibitors with docking scores lower than QNZ (calc. −8.3 kcal/mol) followed by combined MD simulations and MM-GBSA binding energy calculations. Compounds eMol26313223 and eMol26314565 exhibited promising inhibitor activities based on binding affinities (ΔG(binding)) that were twice that of QNZ (−38.5, −34.5, and −15.4 kcal/mol, respectively). Structural and energetic analyses over a 50 ns MD simulation revealed high stability for the inhibitors when complexed with the double mutated PBP2a. The pharmacokinetic properties of the two inhibitors were predicted using an in silico ADMET analysis. Calculated binding affinities hold promise for eMol26313223 and eMol26314565 as allosteric inhibitors of PBP2a in acidic medium and establish that further in vitro and in vivo inhibition experimentation is warranted.
format Online
Article
Text
id pubmed-8388891
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-83888912021-08-27 Non-β-Lactam Allosteric Inhibitors Target Methicillin-Resistant Staphylococcus aureus: An In Silico Drug Discovery Study Ibrahim, Mahmoud A. A. Abdeljawaad, Khlood A. A. Abdelrahman, Alaa H. M. Alzahrani, Othman R. Alshabrmi, Fahad M. Khalaf, Esraa Moustafa, Mahmoud F. Alrumaihi, Faris Allemailem, Khaled S. Soliman, Mahmoud E. S. Paré, Paul W. Hegazy, Mohamed-Elamir F. Atia, Mohamed A. M. Antibiotics (Basel) Article Penicillin-binding proteins (PBPs) catalyze the final stages for peptidoglycan cell-wall bio-synthesis. Mutations in the PBP2a subunit can attenuate β-lactam antibiotic activity, resulting in unimpeded cell-wall formation and methicillin-resistant Staphylococcus aureus (MRSA). A double mutation in PBP2a (i.e., N146K and E150K) is resistant to β-lactam inhibitors; however, (E)-3-(2-(4-cyanostyryl)-4-oxoquinazolin-3(4H)-yl) benzoic acid (QNZ), a heterocyclic antibiotic devoid of a β-lactam ring, interacts non-covalently with PBP2a allosteric site and inhibits PBP enzymatic activity. In the search for novel inhibitors that target this PBP2a allosteric site in acidic medium, an in silico screening was performed. Chemical databases including eMolecules, ChEMBL, and ChEBI were virtually screened for candidate inhibitors with a physicochemical similarity to QNZ. PBP2a binding affinities from the screening were calculated based on molecular docking with co-crystallized ligand QNZ serving as a reference. Molecular minimization calculations were performed for inhibitors with docking scores lower than QNZ (calc. −8.3 kcal/mol) followed by combined MD simulations and MM-GBSA binding energy calculations. Compounds eMol26313223 and eMol26314565 exhibited promising inhibitor activities based on binding affinities (ΔG(binding)) that were twice that of QNZ (−38.5, −34.5, and −15.4 kcal/mol, respectively). Structural and energetic analyses over a 50 ns MD simulation revealed high stability for the inhibitors when complexed with the double mutated PBP2a. The pharmacokinetic properties of the two inhibitors were predicted using an in silico ADMET analysis. Calculated binding affinities hold promise for eMol26313223 and eMol26314565 as allosteric inhibitors of PBP2a in acidic medium and establish that further in vitro and in vivo inhibition experimentation is warranted. MDPI 2021-08-01 /pmc/articles/PMC8388891/ /pubmed/34438984 http://dx.doi.org/10.3390/antibiotics10080934 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Ibrahim, Mahmoud A. A.
Abdeljawaad, Khlood A. A.
Abdelrahman, Alaa H. M.
Alzahrani, Othman R.
Alshabrmi, Fahad M.
Khalaf, Esraa
Moustafa, Mahmoud F.
Alrumaihi, Faris
Allemailem, Khaled S.
Soliman, Mahmoud E. S.
Paré, Paul W.
Hegazy, Mohamed-Elamir F.
Atia, Mohamed A. M.
Non-β-Lactam Allosteric Inhibitors Target Methicillin-Resistant Staphylococcus aureus: An In Silico Drug Discovery Study
title Non-β-Lactam Allosteric Inhibitors Target Methicillin-Resistant Staphylococcus aureus: An In Silico Drug Discovery Study
title_full Non-β-Lactam Allosteric Inhibitors Target Methicillin-Resistant Staphylococcus aureus: An In Silico Drug Discovery Study
title_fullStr Non-β-Lactam Allosteric Inhibitors Target Methicillin-Resistant Staphylococcus aureus: An In Silico Drug Discovery Study
title_full_unstemmed Non-β-Lactam Allosteric Inhibitors Target Methicillin-Resistant Staphylococcus aureus: An In Silico Drug Discovery Study
title_short Non-β-Lactam Allosteric Inhibitors Target Methicillin-Resistant Staphylococcus aureus: An In Silico Drug Discovery Study
title_sort non-β-lactam allosteric inhibitors target methicillin-resistant staphylococcus aureus: an in silico drug discovery study
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8388891/
https://www.ncbi.nlm.nih.gov/pubmed/34438984
http://dx.doi.org/10.3390/antibiotics10080934
work_keys_str_mv AT ibrahimmahmoudaa nonblactamallostericinhibitorstargetmethicillinresistantstaphylococcusaureusaninsilicodrugdiscoverystudy
AT abdeljawaadkhloodaa nonblactamallostericinhibitorstargetmethicillinresistantstaphylococcusaureusaninsilicodrugdiscoverystudy
AT abdelrahmanalaahm nonblactamallostericinhibitorstargetmethicillinresistantstaphylococcusaureusaninsilicodrugdiscoverystudy
AT alzahraniothmanr nonblactamallostericinhibitorstargetmethicillinresistantstaphylococcusaureusaninsilicodrugdiscoverystudy
AT alshabrmifahadm nonblactamallostericinhibitorstargetmethicillinresistantstaphylococcusaureusaninsilicodrugdiscoverystudy
AT khalafesraa nonblactamallostericinhibitorstargetmethicillinresistantstaphylococcusaureusaninsilicodrugdiscoverystudy
AT moustafamahmoudf nonblactamallostericinhibitorstargetmethicillinresistantstaphylococcusaureusaninsilicodrugdiscoverystudy
AT alrumaihifaris nonblactamallostericinhibitorstargetmethicillinresistantstaphylococcusaureusaninsilicodrugdiscoverystudy
AT allemailemkhaleds nonblactamallostericinhibitorstargetmethicillinresistantstaphylococcusaureusaninsilicodrugdiscoverystudy
AT solimanmahmoudes nonblactamallostericinhibitorstargetmethicillinresistantstaphylococcusaureusaninsilicodrugdiscoverystudy
AT parepaulw nonblactamallostericinhibitorstargetmethicillinresistantstaphylococcusaureusaninsilicodrugdiscoverystudy
AT hegazymohamedelamirf nonblactamallostericinhibitorstargetmethicillinresistantstaphylococcusaureusaninsilicodrugdiscoverystudy
AT atiamohamedam nonblactamallostericinhibitorstargetmethicillinresistantstaphylococcusaureusaninsilicodrugdiscoverystudy