Cargando…

D-Galacturonic acid reduction by S. cerevisiae for L-galactonate production from extracted sugar beet press pulp hydrolysate

ABSTRACT: Pectin-rich residues are considered as promising feedstocks for sustainable production of platform chemicals. Enzymatic hydrolysis of extracted sugar beet press pulp (SBPP) releases the main constituent of pectin, d-galacturonic acid (d-GalA). Using engineered Saccharomyces cerevisiae, d-G...

Descripción completa

Detalles Bibliográficos
Autores principales: Wagner, J., Schäfer, D., von den Eichen, N., Haimerl, C., Harth, S., Oreb, M., Benz, J. P., Weuster-Botz, D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8390429/
https://www.ncbi.nlm.nih.gov/pubmed/34268581
http://dx.doi.org/10.1007/s00253-021-11433-5
Descripción
Sumario:ABSTRACT: Pectin-rich residues are considered as promising feedstocks for sustainable production of platform chemicals. Enzymatic hydrolysis of extracted sugar beet press pulp (SBPP) releases the main constituent of pectin, d-galacturonic acid (d-GalA). Using engineered Saccharomyces cerevisiae, d-GalA is then reduced to l-galactonate (l-GalOA) with sorbitol as co-substrate. The current work addresses the combination of enzymatic hydrolysis of pectin in SBPP with a consecutive optimized biotransformation of the released d-GalA to l-GalOA in simple batch processes in stirred-tank bioreactors. Process conditions were first identified with synthetic media, where a product concentration of 9.9 g L(-1) L-GalOA was obtained with a product selectivity of 99% (L-GalOA D-GalA(-1)) at pH 5 with 4% (w/v) sorbitol within 48 h. A very similar batch process performance with a product selectivity of 97% was achieved with potassium citrate buffered SBPP hydrolysate, demonstrating for the first time direct production of L-GalOA from hydrolyzed biomass using engineered S. cerevisiae. Combining the hydrolysis process of extracted SBPP and the biotransformation process with engineered S. cerevisiae paves the way towards repurposing pectin-rich residues as substrates for value-added chemicals. KEY POINTS: • Efficient bioreduction of D-GalA with S. cerevisiae in stirred-tank reactors • Batch production of L-GalOA by engineered S. cerevisiae with high selectivity • Direct L-GalOA production from hydrolyzed sugar beet press pulp GRAPHICAL ABSTRACT: [Figure: see text]