COVLIAS 1.0: Lung Segmentation in COVID-19 Computed Tomography Scans Using Hybrid Deep Learning Artificial Intelligence Models

Background: COVID-19 lung segmentation using Computed Tomography (CT) scans is important for the diagnosis of lung severity. The process of automated lung segmentation is challenging due to (a) CT radiation dosage and (b) ground-glass opacities caused by COVID-19. The lung segmentation methodologies...

Descripción completa

Detalles Bibliográficos
Autores principales: Suri, Jasjit S., Agarwal, Sushant, Pathak, Rajesh, Ketireddy, Vedmanvitha, Columbu, Marta, Saba, Luca, Gupta, Suneet K., Faa, Gavino, Singh, Inder M., Turk, Monika, Chadha, Paramjit S., Johri, Amer M., Khanna, Narendra N., Viskovic, Klaudija, Mavrogeni, Sophie, Laird, John R., Pareek, Gyan, Miner, Martin, Sobel, David W., Balestrieri, Antonella, Sfikakis, Petros P., Tsoulfas, George, Protogerou, Athanasios, Misra, Durga Prasanna, Agarwal, Vikas, Kitas, George D., Teji, Jagjit S., Al-Maini, Mustafa, Dhanjil, Surinder K., Nicolaides, Andrew, Sharma, Aditya, Rathore, Vijay, Fatemi, Mostafa, Alizad, Azra, Krishnan, Pudukode R., Frence, Nagy, Ruzsa, Zoltan, Gupta, Archna, Naidu, Subbaram, Kalra, Mannudeep
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8392426/
https://www.ncbi.nlm.nih.gov/pubmed/34441340
http://dx.doi.org/10.3390/diagnostics11081405