Cargando…
Deep Learning Application for Analyzing of Constituents and Their Correlations in the Interpretations of Medical Images
The need for time and attention, given by the doctor to the patient, due to the increased volume of medical data to be interpreted and filtered for diagnostic and therapeutic purposes has encouraged the development of the option to support, constructively and effectively, deep learning models. Deep...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8393354/ https://www.ncbi.nlm.nih.gov/pubmed/34441307 http://dx.doi.org/10.3390/diagnostics11081373 |
Sumario: | The need for time and attention, given by the doctor to the patient, due to the increased volume of medical data to be interpreted and filtered for diagnostic and therapeutic purposes has encouraged the development of the option to support, constructively and effectively, deep learning models. Deep learning (DL) has experienced an exponential development in recent years, with a major impact on interpretations of the medical image. This has influenced the development, diversification and increase of the quality of scientific data, the development of knowledge construction methods and the improvement of DL models used in medical applications. All research papers focus on description, highlighting, classification of one of the constituent elements of deep learning models (DL), used in the interpretation of medical images and do not provide a unified picture of the importance and impact of each constituent in the performance of DL models. The novelty in our paper consists primarily in the unitary approach, of the constituent elements of DL models, namely, data, tools used by DL architectures or specifically constructed DL architecture combinations and highlighting their “key” features, for completion of tasks in current applications in the interpretation of medical images. The use of “key” characteristics specific to each constituent of DL models and the correct determination of their correlations, may be the subject of future research, with the aim of increasing the performance of DL models in the interpretation of medical images. |
---|