Cargando…

Zebrafish Patient-Derived Xenografts Identify Chemo-Response in Pancreatic Ductal Adenocarcinoma Patients

SIMPLE SUMMARY: Treating the PDAC (pancreatic ductal adenocarcinoma) zPDXs (zebrafish patient-derived xenografts) with chemotherapy regimens commonly used, we performed a co-clinical trial testing the predictiveness of the model. We found that zPDX may predict patient outcomes, classifying them into...

Descripción completa

Detalles Bibliográficos
Autores principales: Usai, Alice, Di Franco, Gregorio, Piccardi, Margherita, Cateni, Perla, Pollina, Luca Emanuele, Vivaldi, Caterina, Vasile, Enrico, Funel, Niccola, Palmeri, Matteo, Dente, Luciana, Falcone, Alfredo, Giunchi, Dimitri, Massolo, Alessandro, Raffa, Vittoria, Morelli, Luca
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8394309/
https://www.ncbi.nlm.nih.gov/pubmed/34439284
http://dx.doi.org/10.3390/cancers13164131
Descripción
Sumario:SIMPLE SUMMARY: Treating the PDAC (pancreatic ductal adenocarcinoma) zPDXs (zebrafish patient-derived xenografts) with chemotherapy regimens commonly used, we performed a co-clinical trial testing the predictiveness of the model. We found that zPDX may predict patient outcomes, classifying them into responders (R) and non-responders (NR), reporting a statistically significant higher cancer recurrence rate at 1 year after surgery in the NR group: 66.7 versus 14.3%. Our zPDX model seems to be a promising tool for the stratification of PDAC patients. This is a crucial starting point for future study involving more patients to obtain a method to really personalize the oncological treatment of PDAC patients. ABSTRACT: It is increasingly evident the necessity of new predictive tools for the treatment of pancreatic ductal adenocarcinoma in a personalized manner. We present a co-clinical trial testing the predictiveness of zPDX (zebrafish patient-derived xenograft) for assessing if patients could benefit from a therapeutic strategy (ClinicalTrials.gov: XenoZ, NCT03668418). zPDX are generated xenografting tumor tissues in zebrafish embryos. zPDX were exposed to chemotherapy regimens commonly used. We considered a zPDX a responder (R) when a decrease ≥50% in the relative tumor area was reported; otherwise, we considered them a non-responder (NR). Patients were classified as Responder if their own zPDX was classified as an R for the chemotherapy scheme she/he received an adjuvant treatment; otherwise, we considered them a Non-Responder. We compared the cancer recurrence rate at 1 year after surgery and the disease-free survival (DFS) of patients of both groups. We reported a statistically significant higher recurrence rate in the Non-Responder group: 66.7% vs. 14.3% (p = 0.036), anticipating relapse/no relapse within 1 year after surgery in 12/16 patients. The mean DFS was longer in the R-group than the NR-group, even if not statistically significant: 19.2 months vs. 12.7 months, (p = 0.123). The proposed strategy could potentially improve preclinical evaluation of treatment modalities and may enable prospective therapeutic selection in everyday clinical practice.