Cargando…

CFH Loss in Human RPE Cells Leads to Inflammation and Complement System Dysregulation via the NF-κB Pathway

Age-related macular degeneration (AMD), the leading cause of vision loss in the elderly, is a degenerative disease of the macula, where retinal pigment epithelium (RPE) cells are damaged in the early stages of the disease, and chronic inflammatory processes may be involved. Besides aging and lifesty...

Descripción completa

Detalles Bibliográficos
Autores principales: Armento, Angela, Schmidt, Tiziana L., Sonntag, Inga, Merle, David A., Jarboui, Mohamed Ali, Kilger, Ellen, Clark, Simon J., Ueffing, Marius
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8396051/
https://www.ncbi.nlm.nih.gov/pubmed/34445430
http://dx.doi.org/10.3390/ijms22168727
_version_ 1783744299085594624
author Armento, Angela
Schmidt, Tiziana L.
Sonntag, Inga
Merle, David A.
Jarboui, Mohamed Ali
Kilger, Ellen
Clark, Simon J.
Ueffing, Marius
author_facet Armento, Angela
Schmidt, Tiziana L.
Sonntag, Inga
Merle, David A.
Jarboui, Mohamed Ali
Kilger, Ellen
Clark, Simon J.
Ueffing, Marius
author_sort Armento, Angela
collection PubMed
description Age-related macular degeneration (AMD), the leading cause of vision loss in the elderly, is a degenerative disease of the macula, where retinal pigment epithelium (RPE) cells are damaged in the early stages of the disease, and chronic inflammatory processes may be involved. Besides aging and lifestyle factors as drivers of AMD, a strong genetic association to AMD is found in genes of the complement system, with a single polymorphism in the complement factor H gene (CFH), accounting for the majority of AMD risk. However, the exact mechanism of CFH dysregulation confers such a great risk for AMD and its role in RPE cell homeostasis is unclear. To explore the role of endogenous CFH locally in RPE cells, we silenced CFH in human hTERT-RPE1 cells. We demonstrate that endogenously expressed CFH in RPE cells modulates inflammatory cytokine production and complement regulation, independent of external complement sources, or stressors. We show that loss of the factor H protein (FH) results in increased levels of inflammatory mediators (e.g., IL-6, IL-8, GM-CSF) and altered levels of complement proteins (e.g., C3, CFB upregulation, and C5 downregulation) that are known to play a role in AMD. Moreover, our results identify the NF-κB pathway as the major pathway involved in regulating these inflammatory and complement factors. Our findings suggest that in RPE cells, FH and the NF-κB pathway work in synergy to maintain inflammatory and complement balance, and in case either one of them is dysregulated, the RPE microenvironment changes towards a proinflammatory AMD-like phenotype.
format Online
Article
Text
id pubmed-8396051
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-83960512021-08-28 CFH Loss in Human RPE Cells Leads to Inflammation and Complement System Dysregulation via the NF-κB Pathway Armento, Angela Schmidt, Tiziana L. Sonntag, Inga Merle, David A. Jarboui, Mohamed Ali Kilger, Ellen Clark, Simon J. Ueffing, Marius Int J Mol Sci Article Age-related macular degeneration (AMD), the leading cause of vision loss in the elderly, is a degenerative disease of the macula, where retinal pigment epithelium (RPE) cells are damaged in the early stages of the disease, and chronic inflammatory processes may be involved. Besides aging and lifestyle factors as drivers of AMD, a strong genetic association to AMD is found in genes of the complement system, with a single polymorphism in the complement factor H gene (CFH), accounting for the majority of AMD risk. However, the exact mechanism of CFH dysregulation confers such a great risk for AMD and its role in RPE cell homeostasis is unclear. To explore the role of endogenous CFH locally in RPE cells, we silenced CFH in human hTERT-RPE1 cells. We demonstrate that endogenously expressed CFH in RPE cells modulates inflammatory cytokine production and complement regulation, independent of external complement sources, or stressors. We show that loss of the factor H protein (FH) results in increased levels of inflammatory mediators (e.g., IL-6, IL-8, GM-CSF) and altered levels of complement proteins (e.g., C3, CFB upregulation, and C5 downregulation) that are known to play a role in AMD. Moreover, our results identify the NF-κB pathway as the major pathway involved in regulating these inflammatory and complement factors. Our findings suggest that in RPE cells, FH and the NF-κB pathway work in synergy to maintain inflammatory and complement balance, and in case either one of them is dysregulated, the RPE microenvironment changes towards a proinflammatory AMD-like phenotype. MDPI 2021-08-13 /pmc/articles/PMC8396051/ /pubmed/34445430 http://dx.doi.org/10.3390/ijms22168727 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Armento, Angela
Schmidt, Tiziana L.
Sonntag, Inga
Merle, David A.
Jarboui, Mohamed Ali
Kilger, Ellen
Clark, Simon J.
Ueffing, Marius
CFH Loss in Human RPE Cells Leads to Inflammation and Complement System Dysregulation via the NF-κB Pathway
title CFH Loss in Human RPE Cells Leads to Inflammation and Complement System Dysregulation via the NF-κB Pathway
title_full CFH Loss in Human RPE Cells Leads to Inflammation and Complement System Dysregulation via the NF-κB Pathway
title_fullStr CFH Loss in Human RPE Cells Leads to Inflammation and Complement System Dysregulation via the NF-κB Pathway
title_full_unstemmed CFH Loss in Human RPE Cells Leads to Inflammation and Complement System Dysregulation via the NF-κB Pathway
title_short CFH Loss in Human RPE Cells Leads to Inflammation and Complement System Dysregulation via the NF-κB Pathway
title_sort cfh loss in human rpe cells leads to inflammation and complement system dysregulation via the nf-κb pathway
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8396051/
https://www.ncbi.nlm.nih.gov/pubmed/34445430
http://dx.doi.org/10.3390/ijms22168727
work_keys_str_mv AT armentoangela cfhlossinhumanrpecellsleadstoinflammationandcomplementsystemdysregulationviathenfkbpathway
AT schmidttizianal cfhlossinhumanrpecellsleadstoinflammationandcomplementsystemdysregulationviathenfkbpathway
AT sonntaginga cfhlossinhumanrpecellsleadstoinflammationandcomplementsystemdysregulationviathenfkbpathway
AT merledavida cfhlossinhumanrpecellsleadstoinflammationandcomplementsystemdysregulationviathenfkbpathway
AT jarbouimohamedali cfhlossinhumanrpecellsleadstoinflammationandcomplementsystemdysregulationviathenfkbpathway
AT kilgerellen cfhlossinhumanrpecellsleadstoinflammationandcomplementsystemdysregulationviathenfkbpathway
AT clarksimonj cfhlossinhumanrpecellsleadstoinflammationandcomplementsystemdysregulationviathenfkbpathway
AT ueffingmarius cfhlossinhumanrpecellsleadstoinflammationandcomplementsystemdysregulationviathenfkbpathway