Cargando…
SFA-MDEN: Semantic-Feature-Aided Monocular Depth Estimation Network Using Dual Branches
Monocular depth estimation based on unsupervised learning has attracted great attention due to the rising demand for lightweight monocular vision sensors. Inspired by multi-task learning, semantic information has been used to improve the monocular depth estimation models. However, multi-task learnin...
Autores principales: | Wang, Rui, Zou, Jialing, Wen, James Zhiqing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398641/ https://www.ncbi.nlm.nih.gov/pubmed/34450917 http://dx.doi.org/10.3390/s21165476 |
Ejemplares similares
-
SemanticDepth: Fusing Semantic Segmentation and Monocular Depth Estimation for Enabling Autonomous Driving in Roads without Lane Lines
por: Palafox, Pablo R., et al.
Publicado: (2019) -
GFI-Net: Global Feature Interaction Network for Monocular Depth Estimation
por: Zhang, Cong, et al.
Publicado: (2023) -
Deep Monocular Depth Estimation Based on Content and Contextual Features
por: Abdulwahab, Saddam, et al.
Publicado: (2023) -
Monocular Depth Estimation: Lightweight Convolutional and Matrix Capsule Feature-Fusion Network
por: Wang, Yinchu, et al.
Publicado: (2022) -
DCPNet: A Densely Connected Pyramid Network for Monocular Depth Estimation
por: Lai, Zhitong, et al.
Publicado: (2021)