Cargando…
Study of p-SiC/n-GaN Hetero-Structural Double-Drift Region IMPATT Diode
Nowadays, the immature p-GaN processes cannot meet the manufacturing requirements of GaN impact ionization avalanche transit time (IMPATT) diodes. Against this backdrop, the performance of wide-bandgap p-SiC/n-GaN heterojunction double-drift region (DDR) IMPATT diode is investigated in this paper fo...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398774/ https://www.ncbi.nlm.nih.gov/pubmed/34442541 http://dx.doi.org/10.3390/mi12080919 |
Sumario: | Nowadays, the immature p-GaN processes cannot meet the manufacturing requirements of GaN impact ionization avalanche transit time (IMPATT) diodes. Against this backdrop, the performance of wide-bandgap p-SiC/n-GaN heterojunction double-drift region (DDR) IMPATT diode is investigated in this paper for the first time. The direct-current (DC) steady-state, small-signal and large-signal characteristics are numerically simulated. The results show that compared with the conventional GaN single-drift region (SDR) IMPATT diode, the performance of the p-SiC/n-GaN DDR IMPATT proposed in this design, such as breakdown voltage, negative conductance, voltage modulation factor, radio frequency (RF) power and DC-RF conversion efficiency have been significantly improved. At the same time, the structure proposed in this design has a larger frequency bandwidth. Due to its greater potential in the RF power density, which is 1.97 MW/cm(2) in this study, indicates that the p-SiC/n-GaN heterojunction provides new possibilities for the design and manufacture of IMPATT diode. |
---|