Cargando…

Membrane Fouling Behavior of Forward Osmosis for Fruit Juice Concentration

Forward osmosis (FO) technology has a broad application prospect in the field of liquid food concentration because of the complete retention of flavor components and bioactive substances. Membrane fouling is the main obstacle affecting the FO performance and concentration efficiency. This work syste...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Zihe, Wu, Chongde, Huang, Jun, Zhou, Rongqing, Jin, Yao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8398857/
https://www.ncbi.nlm.nih.gov/pubmed/34436374
http://dx.doi.org/10.3390/membranes11080611
Descripción
Sumario:Forward osmosis (FO) technology has a broad application prospect in the field of liquid food concentration because of the complete retention of flavor components and bioactive substances. Membrane fouling is the main obstacle affecting the FO performance and concentration efficiency. This work systematically investigated the membrane fouling behavior of the FO process for fruit juice concentration elucidated by the models of resistance-in-series, xDLVO theory and FTIR analysis. The results show that the AL-FS mode was more suitable for concentrating orange juice. Increasing the cross-flow rate and pretreatment of feed solutions can effectively improve the water flux and reduce the fouling resistance. The ATR-FTIR analysis revealed that the fouling layer of orange juice was mainly composed of proteins and polysaccharides, and the pretreatment of microfiltration can greatly reduce the content of the major foulant. There was an attractive interaction between the FO membrane and orange juice foulants; by eliminating those foulants, the microfiltration pretreatment then weakened such an attractive interaction and effectively prevented the fouling layer from growing, leading to a lower process resistance and, finally, resulting in a great improvement of concentration efficiency.