Cargando…
Intention Prediction and Human Health Condition Detection in Reaching Tasks with Machine Learning Techniques †
Detecting human motion and predicting human intentions by analyzing body signals are challenging but fundamental steps for the implementation of applications presenting human–robot interaction in different contexts, such as robotic rehabilitation in clinical environments, or collaborative robots in...
Autores principales: | Ragni, Federica, Archetti, Leonardo, Roby-Brami, Agnès, Amici, Cinzia, Saint-Bauzel, Ludovic |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8399895/ https://www.ncbi.nlm.nih.gov/pubmed/34450696 http://dx.doi.org/10.3390/s21165253 |
Ejemplares similares
-
Haptic communication optimises joint decisions and affords implicit confidence sharing
por: Pezzulo, Giovanni, et al.
Publicado: (2021) -
Movement-Based Control for Upper-Limb Prosthetics: Is the Regression Technique the Key to a Robust and Accurate Control?
por: Legrand, Mathilde, et al.
Publicado: (2018) -
The Robot Selection Problem for Mini-Parallel Kinematic Machines: A Task-Driven Approach to the Selection Attributes Identification
por: Amici, Cinzia, et al.
Publicado: (2020) -
Hand and Grasp Selection in a Preferential Reaching Task: The Effects of Object Location, Orientation, and Task Intention
por: Scharoun, Sara M., et al.
Publicado: (2016) -
Commentary: Hand and Grasp Selection in a Preferential Reaching Task: The Effects of Object Location, Orientation, and Task Intention
por: Moreau, Quentin, et al.
Publicado: (2016)