Cargando…
Investigating Practical Impacts of Using Single-Antenna and Dual-Antenna GNSS/INS Sensors in UAS-Lidar Applications
Data collected from a moving lidar sensor can produce an accurate digital representation of the physical environment that is scanned, provided the time-dependent positions and orientations of the lidar sensor can be determined. The most widely used approach to determining these positions and orienta...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400782/ https://www.ncbi.nlm.nih.gov/pubmed/34450824 http://dx.doi.org/10.3390/s21165382 |
Sumario: | Data collected from a moving lidar sensor can produce an accurate digital representation of the physical environment that is scanned, provided the time-dependent positions and orientations of the lidar sensor can be determined. The most widely used approach to determining these positions and orientations is to collect data with a GNSS/INS sensor. The use of dual-antenna GNSS/INS sensors within commercial UAS-lidar systems is uncommon due to the higher cost and more complex installation of the GNSS antennas. This study investigates the impacts of using a single-antenna and dual-antenna GNSS/INS MEMS-based sensor on the positional precision of a UAS-lidar generated point cloud, with an emphasis on the different heading determination techniques employed by each type of GNSS/INS sensor. Specifically, the impacts that sensor velocity and acceleration (single-antenna), and a GNSS compass (dual-antenna) have on heading precision are investigated. Results indicate that at the slower flying speeds often used by UAS (≤5 m/s), a dual-antenna GNSS/INS sensor can improve heading precision by up to a factor of five relative to a single-antenna GNSS/INS sensor, and that a point of diminishing returns for the improvement of heading precision exists at a flying speed of approximately 15 m/s for single-antenna GNSS/INS sensors. Additionally, a simple estimator for the expected heading precision of a single-antenna GNSS/INS sensor based on flying speed is presented. Utilizing UAS-lidar mapping systems with dual-antenna GNSS/INS sensors provides reliable, robust, and higher precision heading estimates, resulting in point clouds with higher accuracy and precision. |
---|