Cargando…
Deep Convolutional Clustering-Based Time Series Anomaly Detection
This paper presents a novel approach for anomaly detection in industrial processes. The system solely relies on unlabeled data and employs a 1D-convolutional neural network-based deep autoencoder architecture. As a core novelty, we split the autoencoder latent space in discriminative and reconstruct...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400863/ https://www.ncbi.nlm.nih.gov/pubmed/34450930 http://dx.doi.org/10.3390/s21165488 |