Cargando…
Deep Convolutional Clustering-Based Time Series Anomaly Detection
This paper presents a novel approach for anomaly detection in industrial processes. The system solely relies on unlabeled data and employs a 1D-convolutional neural network-based deep autoencoder architecture. As a core novelty, we split the autoencoder latent space in discriminative and reconstruct...
Autores principales: | Chadha, Gavneet Singh, Islam, Intekhab, Schwung, Andreas, Ding, Steven X. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400863/ https://www.ncbi.nlm.nih.gov/pubmed/34450930 http://dx.doi.org/10.3390/s21165488 |
Ejemplares similares
-
Detection of anomalies in cycling behavior with convolutional neural network and deep learning
por: Yaqoob, Shumayla, et al.
Publicado: (2023) -
Unsupervised Anomaly Detection for Cars CAN Sensors Time Series Using Small Recurrent and Convolutional Neural Networks
por: Cherdo, Yann, et al.
Publicado: (2023) -
Anomaly detection for monitoring: a statistical approach to time series anomaly detection
por: Jinka, Preetam, et al.
Publicado: (2015) -
Deep Temporal Convolution Network for Time Series Classification
por: Koh, Bee Hock David, et al.
Publicado: (2021) -
Multivariate-Time-Series-Driven Real-time Anomaly Detection Based on Bayesian Network
por: Ding, Nan, et al.
Publicado: (2018)