Cargando…

Association of HLA-B*51:01, HLA-B*55:01, CYP2C9*3, and Phenytoin-Induced Cutaneous Adverse Drug Reactions in the South Indian Tamil Population

Phenytoin (PHT) is one of the most commonly reported aromatic anti-epileptic drugs (AEDs) to cause cutaneous adverse reactions (CADRs), particularly severe cutaneous adverse reactions (SCARs). Although human leukocyte antigen (HLA)-B*15:02 is associated with PHT-induced Steven Johnson syndrome/toxic...

Descripción completa

Detalles Bibliográficos
Autores principales: John, Shobana, Balakrishnan, Karuppiah, Sukasem, Chonlaphat, Anand, Tharmarajan Chinnathambi Vijay, Canyuk, Bhutorn, Pattharachayakul, Sutthiporn
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8400937/
https://www.ncbi.nlm.nih.gov/pubmed/34442381
http://dx.doi.org/10.3390/jpm11080737
Descripción
Sumario:Phenytoin (PHT) is one of the most commonly reported aromatic anti-epileptic drugs (AEDs) to cause cutaneous adverse reactions (CADRs), particularly severe cutaneous adverse reactions (SCARs). Although human leukocyte antigen (HLA)-B*15:02 is associated with PHT-induced Steven Johnson syndrome/toxic epidermal necrosis (SJS/TEN) in East Asians, the association is much weaker than it is reported for carbamazepine (CBZ). In this study, we investigated the association of pharmacogenetic variants of the HLA B gene and CYP2C9*3 with PHT-CADRs in South Indian epileptic patients. This prospective case-controlled study included 25 PHT-induced CADRs, 30 phenytoin-tolerant patients, and 463 (HLA-B) and 82 (CYP2C9*3) normal-controls from previous studies included for the case and normal-control comparison. Six SCARs cases and 19 mild-moderate reactions were observed among the 25 cases. Pooled data analysis was performed for the HLA B*51:01 and PHT-CADRs associations. The Fisher exact test and multivariate binary logistic regression analysis were used to identify the susceptible alleles associated with PHT-CADRs. Multivariate analysis showed that CYP2C9*3 was significantly associated with overall PHT-CADRs (OR = 12.00, 95% CI 2.759–84.87, p = 003). In subgroup analysis, CYP2C9*3 and HLA B*55:01 were found to be associated with PHT-SCARs (OR = 12.45, 95% CI 1.138–136.2, p = 0.003) and PHT-maculopapular exanthema (MPE) (OR = 4.041, 95% CI 1.125–15.67, p = 0.035), respectively. Pooled data analysis has confirmed the association between HLA B*51:01/PHT-SCARs (OR = 6.273, 95% CI 2.24–16.69, p = <0.001) and HLA B*51:01/PHT-overall CADRs (OR = 2.323, 95% CI 1.22–5.899, p = 0.037). In this study, neither the case nor the control groups had any patients with HLA B*15:02. The risk variables for PHT-SCARs, PHT-overall CADRs, and PHT-MPE were found to be HLA B*51:01, CYP2C9*3, and HLA B*55:01, respectively. These alleles were identified as the risk factors for the first time in the South Indian Tamil population for PHT-CADRs. Further investigation is warranted to establish the clinical relevance of these alleles in this population with larger sample size.