Cargando…
Palonosetron/Methyllycaconitine Deactivate Hippocampal Microglia 1, Inflammasome Assembly and Pyroptosis to Enhance Cognition in a Novel Model of Neuroinflammation
Since westernized diet-induced insulin resistance is a risk factor in Alzheimer’s disease (AD) development, and lipopolysaccharide (LPS) coexists with amyloid β (Aβ)1-42 in these patients, our AD novel model was developed to resemble sporadic AD by injecting LPS into high fat/fructose diet (HFFD)-fe...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401912/ https://www.ncbi.nlm.nih.gov/pubmed/34443654 http://dx.doi.org/10.3390/molecules26165068 |
_version_ | 1783745663113101312 |
---|---|
author | Mohamed, Reem A. Abdallah, Dalaal M. El-brairy, Amany I. Ahmed, Kawkab A. El-Abhar, Hanan S. |
author_facet | Mohamed, Reem A. Abdallah, Dalaal M. El-brairy, Amany I. Ahmed, Kawkab A. El-Abhar, Hanan S. |
author_sort | Mohamed, Reem A. |
collection | PubMed |
description | Since westernized diet-induced insulin resistance is a risk factor in Alzheimer’s disease (AD) development, and lipopolysaccharide (LPS) coexists with amyloid β (Aβ)1-42 in these patients, our AD novel model was developed to resemble sporadic AD by injecting LPS into high fat/fructose diet (HFFD)-fed rats. The neuroprotective potential of palonosetron and/or methyllycaconitine, 5-HT3 receptor and α7 nAChR blockers, respectively, was evaluated after 8 days of daily administration in HFFD/LPS rats. All regimens improved histopathological findings and enhanced spatial memory (Morris Water Maze); however, palonosetron alone or with methyllycaconitine promoted animal performance during novel object recognition tests. In the hippocampus, all regimens reduced the expression of glial fibrillary acidic protein and skewed microglia M1 to M2 phenotype, indicated by the decreased M1 markers and the enhanced M2 related parameters. Additionally, palonosetron and its combination regimen downregulated the expression of ASC/TMS1, as well as levels of inflammasome downstream molecules and abated cleaved caspase-1, interleukin (IL)-1β, IL-18 and caspase-11. Furthermore, ACh and 5-HT were augmented after being hampered by the insult. Our study speculates that blocking 5-HT3 receptor using palonosetron overrides methyllycaconitine to combat AD-induced neuroinflammation and inflammasome cascade, as well as to restore microglial function in a HFFD/LPS novel model for sporadic AD. |
format | Online Article Text |
id | pubmed-8401912 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84019122021-08-29 Palonosetron/Methyllycaconitine Deactivate Hippocampal Microglia 1, Inflammasome Assembly and Pyroptosis to Enhance Cognition in a Novel Model of Neuroinflammation Mohamed, Reem A. Abdallah, Dalaal M. El-brairy, Amany I. Ahmed, Kawkab A. El-Abhar, Hanan S. Molecules Article Since westernized diet-induced insulin resistance is a risk factor in Alzheimer’s disease (AD) development, and lipopolysaccharide (LPS) coexists with amyloid β (Aβ)1-42 in these patients, our AD novel model was developed to resemble sporadic AD by injecting LPS into high fat/fructose diet (HFFD)-fed rats. The neuroprotective potential of palonosetron and/or methyllycaconitine, 5-HT3 receptor and α7 nAChR blockers, respectively, was evaluated after 8 days of daily administration in HFFD/LPS rats. All regimens improved histopathological findings and enhanced spatial memory (Morris Water Maze); however, palonosetron alone or with methyllycaconitine promoted animal performance during novel object recognition tests. In the hippocampus, all regimens reduced the expression of glial fibrillary acidic protein and skewed microglia M1 to M2 phenotype, indicated by the decreased M1 markers and the enhanced M2 related parameters. Additionally, palonosetron and its combination regimen downregulated the expression of ASC/TMS1, as well as levels of inflammasome downstream molecules and abated cleaved caspase-1, interleukin (IL)-1β, IL-18 and caspase-11. Furthermore, ACh and 5-HT were augmented after being hampered by the insult. Our study speculates that blocking 5-HT3 receptor using palonosetron overrides methyllycaconitine to combat AD-induced neuroinflammation and inflammasome cascade, as well as to restore microglial function in a HFFD/LPS novel model for sporadic AD. MDPI 2021-08-21 /pmc/articles/PMC8401912/ /pubmed/34443654 http://dx.doi.org/10.3390/molecules26165068 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Mohamed, Reem A. Abdallah, Dalaal M. El-brairy, Amany I. Ahmed, Kawkab A. El-Abhar, Hanan S. Palonosetron/Methyllycaconitine Deactivate Hippocampal Microglia 1, Inflammasome Assembly and Pyroptosis to Enhance Cognition in a Novel Model of Neuroinflammation |
title | Palonosetron/Methyllycaconitine Deactivate Hippocampal Microglia 1, Inflammasome Assembly and Pyroptosis to Enhance Cognition in a Novel Model of Neuroinflammation |
title_full | Palonosetron/Methyllycaconitine Deactivate Hippocampal Microglia 1, Inflammasome Assembly and Pyroptosis to Enhance Cognition in a Novel Model of Neuroinflammation |
title_fullStr | Palonosetron/Methyllycaconitine Deactivate Hippocampal Microglia 1, Inflammasome Assembly and Pyroptosis to Enhance Cognition in a Novel Model of Neuroinflammation |
title_full_unstemmed | Palonosetron/Methyllycaconitine Deactivate Hippocampal Microglia 1, Inflammasome Assembly and Pyroptosis to Enhance Cognition in a Novel Model of Neuroinflammation |
title_short | Palonosetron/Methyllycaconitine Deactivate Hippocampal Microglia 1, Inflammasome Assembly and Pyroptosis to Enhance Cognition in a Novel Model of Neuroinflammation |
title_sort | palonosetron/methyllycaconitine deactivate hippocampal microglia 1, inflammasome assembly and pyroptosis to enhance cognition in a novel model of neuroinflammation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8401912/ https://www.ncbi.nlm.nih.gov/pubmed/34443654 http://dx.doi.org/10.3390/molecules26165068 |
work_keys_str_mv | AT mohamedreema palonosetronmethyllycaconitinedeactivatehippocampalmicroglia1inflammasomeassemblyandpyroptosistoenhancecognitioninanovelmodelofneuroinflammation AT abdallahdalaalm palonosetronmethyllycaconitinedeactivatehippocampalmicroglia1inflammasomeassemblyandpyroptosistoenhancecognitioninanovelmodelofneuroinflammation AT elbrairyamanyi palonosetronmethyllycaconitinedeactivatehippocampalmicroglia1inflammasomeassemblyandpyroptosistoenhancecognitioninanovelmodelofneuroinflammation AT ahmedkawkaba palonosetronmethyllycaconitinedeactivatehippocampalmicroglia1inflammasomeassemblyandpyroptosistoenhancecognitioninanovelmodelofneuroinflammation AT elabharhanans palonosetronmethyllycaconitinedeactivatehippocampalmicroglia1inflammasomeassemblyandpyroptosistoenhancecognitioninanovelmodelofneuroinflammation |