Cargando…
VENUS, a Novel Selection Approach to Improve the Accuracy of Neoantigens’ Prediction
Neoantigens are tumor-specific antigens able to induce T-cell responses, generated by mutations in protein-coding regions of expressed genes. Previous studies demonstrated that only a limited subset of mutations generates neoantigens in microsatellite stable tumors. We developed a method, called VEN...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8402534/ https://www.ncbi.nlm.nih.gov/pubmed/34452005 http://dx.doi.org/10.3390/vaccines9080880 |
_version_ | 1783745812870725632 |
---|---|
author | Leoni, Guido D’Alise, Anna Morena Tucci, Fabio Giovanni Micarelli, Elisa Garzia, Irene De Lucia, Maria Langone, Francesca Nocchi, Linda Cotugno, Gabriella Bartolomeo, Rosa Romano, Giuseppina Allocca, Simona Troise, Fulvia Nicosia, Alfredo Lahm, Armin Scarselli, Elisa |
author_facet | Leoni, Guido D’Alise, Anna Morena Tucci, Fabio Giovanni Micarelli, Elisa Garzia, Irene De Lucia, Maria Langone, Francesca Nocchi, Linda Cotugno, Gabriella Bartolomeo, Rosa Romano, Giuseppina Allocca, Simona Troise, Fulvia Nicosia, Alfredo Lahm, Armin Scarselli, Elisa |
author_sort | Leoni, Guido |
collection | PubMed |
description | Neoantigens are tumor-specific antigens able to induce T-cell responses, generated by mutations in protein-coding regions of expressed genes. Previous studies demonstrated that only a limited subset of mutations generates neoantigens in microsatellite stable tumors. We developed a method, called VENUS (Vaccine-Encoded Neoantigens Unrestricted Selection), to prioritize mutated peptides with high potential to be neoantigens. Our method assigns to each mutation a weighted score that combines the mutation allelic frequency, the abundance of the transcript coding for the mutation, and the likelihood to bind the patient’s class-I major histocompatibility complex alleles. By ranking mutated peptides encoded by mutations detected in nine cancer patients, VENUS was able to select in the top 60 ranked peptides, the 95% of neoantigens experimentally validated including both CD8 and CD4 T cell specificities. VENUS was evaluated in a murine model in the context of vaccination with an adeno vector encoding the top ranked mutations prioritized in the MC38 cell line. Efficacy studies demonstrated anti tumoral activity of the vaccine when used in combination with checkpoint inhibitors. The results obtained highlight the importance of a combined scoring system taking into account multiple features of each tumor mutation to improve the accuracy of neoantigen prediction. |
format | Online Article Text |
id | pubmed-8402534 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84025342021-08-29 VENUS, a Novel Selection Approach to Improve the Accuracy of Neoantigens’ Prediction Leoni, Guido D’Alise, Anna Morena Tucci, Fabio Giovanni Micarelli, Elisa Garzia, Irene De Lucia, Maria Langone, Francesca Nocchi, Linda Cotugno, Gabriella Bartolomeo, Rosa Romano, Giuseppina Allocca, Simona Troise, Fulvia Nicosia, Alfredo Lahm, Armin Scarselli, Elisa Vaccines (Basel) Article Neoantigens are tumor-specific antigens able to induce T-cell responses, generated by mutations in protein-coding regions of expressed genes. Previous studies demonstrated that only a limited subset of mutations generates neoantigens in microsatellite stable tumors. We developed a method, called VENUS (Vaccine-Encoded Neoantigens Unrestricted Selection), to prioritize mutated peptides with high potential to be neoantigens. Our method assigns to each mutation a weighted score that combines the mutation allelic frequency, the abundance of the transcript coding for the mutation, and the likelihood to bind the patient’s class-I major histocompatibility complex alleles. By ranking mutated peptides encoded by mutations detected in nine cancer patients, VENUS was able to select in the top 60 ranked peptides, the 95% of neoantigens experimentally validated including both CD8 and CD4 T cell specificities. VENUS was evaluated in a murine model in the context of vaccination with an adeno vector encoding the top ranked mutations prioritized in the MC38 cell line. Efficacy studies demonstrated anti tumoral activity of the vaccine when used in combination with checkpoint inhibitors. The results obtained highlight the importance of a combined scoring system taking into account multiple features of each tumor mutation to improve the accuracy of neoantigen prediction. MDPI 2021-08-09 /pmc/articles/PMC8402534/ /pubmed/34452005 http://dx.doi.org/10.3390/vaccines9080880 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Leoni, Guido D’Alise, Anna Morena Tucci, Fabio Giovanni Micarelli, Elisa Garzia, Irene De Lucia, Maria Langone, Francesca Nocchi, Linda Cotugno, Gabriella Bartolomeo, Rosa Romano, Giuseppina Allocca, Simona Troise, Fulvia Nicosia, Alfredo Lahm, Armin Scarselli, Elisa VENUS, a Novel Selection Approach to Improve the Accuracy of Neoantigens’ Prediction |
title | VENUS, a Novel Selection Approach to Improve the Accuracy of Neoantigens’ Prediction |
title_full | VENUS, a Novel Selection Approach to Improve the Accuracy of Neoantigens’ Prediction |
title_fullStr | VENUS, a Novel Selection Approach to Improve the Accuracy of Neoantigens’ Prediction |
title_full_unstemmed | VENUS, a Novel Selection Approach to Improve the Accuracy of Neoantigens’ Prediction |
title_short | VENUS, a Novel Selection Approach to Improve the Accuracy of Neoantigens’ Prediction |
title_sort | venus, a novel selection approach to improve the accuracy of neoantigens’ prediction |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8402534/ https://www.ncbi.nlm.nih.gov/pubmed/34452005 http://dx.doi.org/10.3390/vaccines9080880 |
work_keys_str_mv | AT leoniguido venusanovelselectionapproachtoimprovetheaccuracyofneoantigensprediction AT daliseannamorena venusanovelselectionapproachtoimprovetheaccuracyofneoantigensprediction AT tuccifabiogiovanni venusanovelselectionapproachtoimprovetheaccuracyofneoantigensprediction AT micarellielisa venusanovelselectionapproachtoimprovetheaccuracyofneoantigensprediction AT garziairene venusanovelselectionapproachtoimprovetheaccuracyofneoantigensprediction AT deluciamaria venusanovelselectionapproachtoimprovetheaccuracyofneoantigensprediction AT langonefrancesca venusanovelselectionapproachtoimprovetheaccuracyofneoantigensprediction AT nocchilinda venusanovelselectionapproachtoimprovetheaccuracyofneoantigensprediction AT cotugnogabriella venusanovelselectionapproachtoimprovetheaccuracyofneoantigensprediction AT bartolomeorosa venusanovelselectionapproachtoimprovetheaccuracyofneoantigensprediction AT romanogiuseppina venusanovelselectionapproachtoimprovetheaccuracyofneoantigensprediction AT alloccasimona venusanovelselectionapproachtoimprovetheaccuracyofneoantigensprediction AT troisefulvia venusanovelselectionapproachtoimprovetheaccuracyofneoantigensprediction AT nicosiaalfredo venusanovelselectionapproachtoimprovetheaccuracyofneoantigensprediction AT lahmarmin venusanovelselectionapproachtoimprovetheaccuracyofneoantigensprediction AT scarsellielisa venusanovelselectionapproachtoimprovetheaccuracyofneoantigensprediction |