Cargando…
Predicting postoperative surgical site infection with administrative data: a random forests algorithm
BACKGROUND: Since primary data collection can be time-consuming and expensive, surgical site infections (SSIs) could ideally be monitored using routinely collected administrative data. We derived and internally validated efficient algorithms to identify SSIs within 30 days after surgery with health...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8403439/ https://www.ncbi.nlm.nih.gov/pubmed/34454414 http://dx.doi.org/10.1186/s12874-021-01369-9 |