Cargando…

Molecular basis of cholesterol efflux via ABCG subfamily transporters

The ABCG1 homodimer (G1) and ABCG5–ABCG8 heterodimer (G5G8), two members of the adenosine triphosphate (ATP)–binding cassette (ABC) transporter G family, are required for maintenance of cellular cholesterol levels. G5G8 mediates secretion of neutral sterols into bile and the gut lumen, whereas G1 tr...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Yingyuan, Wang, Jin, Long, Tao, Qi, Xiaofeng, Donnelly, Linda, Elghobashi-Meinhardt, Nadia, Esparza, Leticia, Cohen, Jonathan C., Xie, Xiao-Song, Hobbs, Helen H., Li, Xiaochun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8403869/
https://www.ncbi.nlm.nih.gov/pubmed/34404721
http://dx.doi.org/10.1073/pnas.2110483118
Descripción
Sumario:The ABCG1 homodimer (G1) and ABCG5–ABCG8 heterodimer (G5G8), two members of the adenosine triphosphate (ATP)–binding cassette (ABC) transporter G family, are required for maintenance of cellular cholesterol levels. G5G8 mediates secretion of neutral sterols into bile and the gut lumen, whereas G1 transports cholesterol from macrophages to high-density lipoproteins (HDLs). The mechanisms used by G5G8 and G1 to recognize and export sterols remain unclear. Here, we report cryoelectron microscopy (cryo-EM) structures of human G5G8 in sterol-bound and human G1 in cholesterol- and ATP-bound states. Both transporters have a sterol-binding site that is accessible from the cytosolic leaflet. A second site is present midway through the transmembrane domains of G5G8. The Walker A motif of G8 adopts a unique conformation that accounts for the marked asymmetry in ATPase activities between the two nucleotide-binding sites of G5G8. These structures, along with functional validation studies, provide a mechanistic framework for understanding cholesterol efflux via ABC transporters.