Cargando…
Data-driven clustering identifies features distinguishing multisystem inflammatory syndrome from acute COVID-19 in children and adolescents
BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) consensus criteria were designed for maximal sensitivity and therefore capture patients with acute COVID-19 pneumonia. METHODS: We performed unsupervised clustering on data from 1,526 patients (684 labeled MIS-C by clinicians) <21...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8405351/ https://www.ncbi.nlm.nih.gov/pubmed/34485878 http://dx.doi.org/10.1016/j.eclinm.2021.101112 |