Cargando…

Data-driven clustering identifies features distinguishing multisystem inflammatory syndrome from acute COVID-19 in children and adolescents

BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) consensus criteria were designed for maximal sensitivity and therefore capture patients with acute COVID-19 pneumonia. METHODS: We performed unsupervised clustering on data from 1,526 patients (684 labeled MIS-C by clinicians) <21...

Descripción completa

Detalles Bibliográficos
Autores principales: Geva, Alon, Patel, Manish M., Newhams, Margaret M., Young, Cameron C., Son, Mary Beth F., Kong, Michele, Maddux, Aline B., Hall, Mark W., Riggs, Becky J., Singh, Aalok R., Giuliano, John S., Hobbs, Charlotte V., Loftis, Laura L., McLaughlin, Gwenn E., Schwartz, Stephanie P., Schuster, Jennifer E., Babbitt, Christopher J., Halasa, Natasha B., Gertz, Shira J., Doymaz, Sule, Hume, Janet R., Bradford, Tamara T., Irby, Katherine, Carroll, Christopher L., McGuire, John K., Tarquinio, Keiko M., Rowan, Courtney M., Mack, Elizabeth H., Cvijanovich, Natalie Z., Fitzgerald, Julie C., Spinella, Philip C., Staat, Mary A., Clouser, Katharine N., Soma, Vijaya L., Dapul, Heda, Maamari, Mia, Bowens, Cindy, Havlin, Kevin M., Mourani, Peter M., Heidemann, Sabrina M., Horwitz, Steven M., Feldstein, Leora R., Tenforde, Mark W., Newburger, Jane W., Mandl, Kenneth D., Randolph, Adrienne G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8405351/
https://www.ncbi.nlm.nih.gov/pubmed/34485878
http://dx.doi.org/10.1016/j.eclinm.2021.101112
_version_ 1783746315559108608
author Geva, Alon
Patel, Manish M.
Newhams, Margaret M.
Young, Cameron C.
Son, Mary Beth F.
Kong, Michele
Maddux, Aline B.
Hall, Mark W.
Riggs, Becky J.
Singh, Aalok R.
Giuliano, John S.
Hobbs, Charlotte V.
Loftis, Laura L.
McLaughlin, Gwenn E.
Schwartz, Stephanie P.
Schuster, Jennifer E.
Babbitt, Christopher J.
Halasa, Natasha B.
Gertz, Shira J.
Doymaz, Sule
Hume, Janet R.
Bradford, Tamara T.
Irby, Katherine
Carroll, Christopher L.
McGuire, John K.
Tarquinio, Keiko M.
Rowan, Courtney M.
Mack, Elizabeth H.
Cvijanovich, Natalie Z.
Fitzgerald, Julie C.
Spinella, Philip C.
Staat, Mary A.
Clouser, Katharine N.
Soma, Vijaya L.
Dapul, Heda
Maamari, Mia
Bowens, Cindy
Havlin, Kevin M.
Mourani, Peter M.
Heidemann, Sabrina M.
Horwitz, Steven M.
Feldstein, Leora R.
Tenforde, Mark W.
Newburger, Jane W.
Mandl, Kenneth D.
Randolph, Adrienne G.
author_facet Geva, Alon
Patel, Manish M.
Newhams, Margaret M.
Young, Cameron C.
Son, Mary Beth F.
Kong, Michele
Maddux, Aline B.
Hall, Mark W.
Riggs, Becky J.
Singh, Aalok R.
Giuliano, John S.
Hobbs, Charlotte V.
Loftis, Laura L.
McLaughlin, Gwenn E.
Schwartz, Stephanie P.
Schuster, Jennifer E.
Babbitt, Christopher J.
Halasa, Natasha B.
Gertz, Shira J.
Doymaz, Sule
Hume, Janet R.
Bradford, Tamara T.
Irby, Katherine
Carroll, Christopher L.
McGuire, John K.
Tarquinio, Keiko M.
Rowan, Courtney M.
Mack, Elizabeth H.
Cvijanovich, Natalie Z.
Fitzgerald, Julie C.
Spinella, Philip C.
Staat, Mary A.
Clouser, Katharine N.
Soma, Vijaya L.
Dapul, Heda
Maamari, Mia
Bowens, Cindy
Havlin, Kevin M.
Mourani, Peter M.
Heidemann, Sabrina M.
Horwitz, Steven M.
Feldstein, Leora R.
Tenforde, Mark W.
Newburger, Jane W.
Mandl, Kenneth D.
Randolph, Adrienne G.
author_sort Geva, Alon
collection PubMed
description BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) consensus criteria were designed for maximal sensitivity and therefore capture patients with acute COVID-19 pneumonia. METHODS: We performed unsupervised clustering on data from 1,526 patients (684 labeled MIS-C by clinicians) <21 years old hospitalized with COVID-19-related illness admitted between 15 March 2020 and 31 December 2020. We compared prevalence of assigned MIS-C labels and clinical features among clusters, followed by recursive feature elimination to identify characteristics of potentially misclassified MIS-C-labeled patients. FINDINGS: Of 94 clinical features tested, 46 were retained for clustering. Cluster 1 patients (N = 498; 92% labeled MIS-C) were mostly previously healthy (71%), with mean age 7·2 ± 0·4 years, predominant cardiovascular (77%) and/or mucocutaneous (82%) involvement, high inflammatory biomarkers, and mostly SARS-CoV-2 PCR negative (60%). Cluster 2 patients (N = 445; 27% labeled MIS-C) frequently had pre-existing conditions (79%, with 39% respiratory), were similarly 7·4 ± 2·1 years old, and commonly had chest radiograph infiltrates (79%) and positive PCR testing (90%). Cluster 3 patients (N = 583; 19% labeled MIS-C) were younger (2·8 ± 2·0 y), PCR positive (86%), with less inflammation. Radiographic findings of pulmonary infiltrates and positive SARS-CoV-2 PCR accurately distinguished cluster 2 MIS-C labeled patients from cluster 1 patients. INTERPRETATION: Using a data driven, unsupervised approach, we identified features that cluster patients into a group with high likelihood of having MIS-C. Other features identified a cluster of patients more likely to have acute severe COVID-19 pulmonary disease, and patients in this cluster labeled by clinicians as MIS-C may be misclassified. These data driven phenotypes may help refine the diagnosis of MIS-C. FUNDING: This work was funded by the US Centers for Disease Control and Prevention (75D30120C07725) and National Institutes of Health (K12HD047349 and R21HD095228).
format Online
Article
Text
id pubmed-8405351
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-84053512021-08-31 Data-driven clustering identifies features distinguishing multisystem inflammatory syndrome from acute COVID-19 in children and adolescents Geva, Alon Patel, Manish M. Newhams, Margaret M. Young, Cameron C. Son, Mary Beth F. Kong, Michele Maddux, Aline B. Hall, Mark W. Riggs, Becky J. Singh, Aalok R. Giuliano, John S. Hobbs, Charlotte V. Loftis, Laura L. McLaughlin, Gwenn E. Schwartz, Stephanie P. Schuster, Jennifer E. Babbitt, Christopher J. Halasa, Natasha B. Gertz, Shira J. Doymaz, Sule Hume, Janet R. Bradford, Tamara T. Irby, Katherine Carroll, Christopher L. McGuire, John K. Tarquinio, Keiko M. Rowan, Courtney M. Mack, Elizabeth H. Cvijanovich, Natalie Z. Fitzgerald, Julie C. Spinella, Philip C. Staat, Mary A. Clouser, Katharine N. Soma, Vijaya L. Dapul, Heda Maamari, Mia Bowens, Cindy Havlin, Kevin M. Mourani, Peter M. Heidemann, Sabrina M. Horwitz, Steven M. Feldstein, Leora R. Tenforde, Mark W. Newburger, Jane W. Mandl, Kenneth D. Randolph, Adrienne G. EClinicalMedicine Research Paper BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) consensus criteria were designed for maximal sensitivity and therefore capture patients with acute COVID-19 pneumonia. METHODS: We performed unsupervised clustering on data from 1,526 patients (684 labeled MIS-C by clinicians) <21 years old hospitalized with COVID-19-related illness admitted between 15 March 2020 and 31 December 2020. We compared prevalence of assigned MIS-C labels and clinical features among clusters, followed by recursive feature elimination to identify characteristics of potentially misclassified MIS-C-labeled patients. FINDINGS: Of 94 clinical features tested, 46 were retained for clustering. Cluster 1 patients (N = 498; 92% labeled MIS-C) were mostly previously healthy (71%), with mean age 7·2 ± 0·4 years, predominant cardiovascular (77%) and/or mucocutaneous (82%) involvement, high inflammatory biomarkers, and mostly SARS-CoV-2 PCR negative (60%). Cluster 2 patients (N = 445; 27% labeled MIS-C) frequently had pre-existing conditions (79%, with 39% respiratory), were similarly 7·4 ± 2·1 years old, and commonly had chest radiograph infiltrates (79%) and positive PCR testing (90%). Cluster 3 patients (N = 583; 19% labeled MIS-C) were younger (2·8 ± 2·0 y), PCR positive (86%), with less inflammation. Radiographic findings of pulmonary infiltrates and positive SARS-CoV-2 PCR accurately distinguished cluster 2 MIS-C labeled patients from cluster 1 patients. INTERPRETATION: Using a data driven, unsupervised approach, we identified features that cluster patients into a group with high likelihood of having MIS-C. Other features identified a cluster of patients more likely to have acute severe COVID-19 pulmonary disease, and patients in this cluster labeled by clinicians as MIS-C may be misclassified. These data driven phenotypes may help refine the diagnosis of MIS-C. FUNDING: This work was funded by the US Centers for Disease Control and Prevention (75D30120C07725) and National Institutes of Health (K12HD047349 and R21HD095228). Elsevier 2021-08-31 /pmc/articles/PMC8405351/ /pubmed/34485878 http://dx.doi.org/10.1016/j.eclinm.2021.101112 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Paper
Geva, Alon
Patel, Manish M.
Newhams, Margaret M.
Young, Cameron C.
Son, Mary Beth F.
Kong, Michele
Maddux, Aline B.
Hall, Mark W.
Riggs, Becky J.
Singh, Aalok R.
Giuliano, John S.
Hobbs, Charlotte V.
Loftis, Laura L.
McLaughlin, Gwenn E.
Schwartz, Stephanie P.
Schuster, Jennifer E.
Babbitt, Christopher J.
Halasa, Natasha B.
Gertz, Shira J.
Doymaz, Sule
Hume, Janet R.
Bradford, Tamara T.
Irby, Katherine
Carroll, Christopher L.
McGuire, John K.
Tarquinio, Keiko M.
Rowan, Courtney M.
Mack, Elizabeth H.
Cvijanovich, Natalie Z.
Fitzgerald, Julie C.
Spinella, Philip C.
Staat, Mary A.
Clouser, Katharine N.
Soma, Vijaya L.
Dapul, Heda
Maamari, Mia
Bowens, Cindy
Havlin, Kevin M.
Mourani, Peter M.
Heidemann, Sabrina M.
Horwitz, Steven M.
Feldstein, Leora R.
Tenforde, Mark W.
Newburger, Jane W.
Mandl, Kenneth D.
Randolph, Adrienne G.
Data-driven clustering identifies features distinguishing multisystem inflammatory syndrome from acute COVID-19 in children and adolescents
title Data-driven clustering identifies features distinguishing multisystem inflammatory syndrome from acute COVID-19 in children and adolescents
title_full Data-driven clustering identifies features distinguishing multisystem inflammatory syndrome from acute COVID-19 in children and adolescents
title_fullStr Data-driven clustering identifies features distinguishing multisystem inflammatory syndrome from acute COVID-19 in children and adolescents
title_full_unstemmed Data-driven clustering identifies features distinguishing multisystem inflammatory syndrome from acute COVID-19 in children and adolescents
title_short Data-driven clustering identifies features distinguishing multisystem inflammatory syndrome from acute COVID-19 in children and adolescents
title_sort data-driven clustering identifies features distinguishing multisystem inflammatory syndrome from acute covid-19 in children and adolescents
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8405351/
https://www.ncbi.nlm.nih.gov/pubmed/34485878
http://dx.doi.org/10.1016/j.eclinm.2021.101112
work_keys_str_mv AT gevaalon datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT patelmanishm datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT newhamsmargaretm datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT youngcameronc datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT sonmarybethf datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT kongmichele datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT madduxalineb datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT hallmarkw datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT riggsbeckyj datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT singhaalokr datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT giulianojohns datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT hobbscharlottev datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT loftislaural datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT mclaughlingwenne datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT schwartzstephaniep datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT schusterjennifere datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT babbittchristopherj datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT halasanatashab datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT gertzshiraj datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT doymazsule datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT humejanetr datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT bradfordtamarat datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT irbykatherine datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT carrollchristopherl datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT mcguirejohnk datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT tarquiniokeikom datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT rowancourtneym datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT mackelizabethh datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT cvijanovichnataliez datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT fitzgeraldjuliec datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT spinellaphilipc datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT staatmarya datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT clouserkatharinen datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT somavijayal datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT dapulheda datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT maamarimia datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT bowenscindy datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT havlinkevinm datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT mouranipeterm datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT heidemannsabrinam datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT horwitzstevenm datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT feldsteinleorar datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT tenfordemarkw datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT newburgerjanew datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT mandlkennethd datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT randolphadrienneg datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents
AT datadrivenclusteringidentifiesfeaturesdistinguishingmultisysteminflammatorysyndromefromacutecovid19inchildrenandadolescents