Cargando…
TGFβ signalling is required to maintain pluripotency of human naïve pluripotent stem cells
The signalling pathways that maintain primed human pluripotent stem cells (hPSCs) have been well characterised, revealing a critical role for TGFβ/Activin/Nodal signalling. In contrast, the signalling requirements of naïve human pluripotency have not been fully established. Here, we demonstrate that...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8410071/ https://www.ncbi.nlm.nih.gov/pubmed/34463252 http://dx.doi.org/10.7554/eLife.67259 |
_version_ | 1783747091796852736 |
---|---|
author | Osnato, Anna Brown, Stephanie Krueger, Christel Andrews, Simon Collier, Amanda J Nakanoh, Shota Quiroga Londoño, Mariana Wesley, Brandon T Muraro, Daniele Brumm, A Sophie Niakan, Kathy K Vallier, Ludovic Ortmann, Daniel Rugg-Gunn, Peter J |
author_facet | Osnato, Anna Brown, Stephanie Krueger, Christel Andrews, Simon Collier, Amanda J Nakanoh, Shota Quiroga Londoño, Mariana Wesley, Brandon T Muraro, Daniele Brumm, A Sophie Niakan, Kathy K Vallier, Ludovic Ortmann, Daniel Rugg-Gunn, Peter J |
author_sort | Osnato, Anna |
collection | PubMed |
description | The signalling pathways that maintain primed human pluripotent stem cells (hPSCs) have been well characterised, revealing a critical role for TGFβ/Activin/Nodal signalling. In contrast, the signalling requirements of naïve human pluripotency have not been fully established. Here, we demonstrate that TGFβ signalling is required to maintain naïve hPSCs. The downstream effector proteins – SMAD2/3 – bind common sites in naïve and primed hPSCs, including shared pluripotency genes. In naïve hPSCs, SMAD2/3 additionally bind to active regulatory regions near to naïve pluripotency genes. Inhibiting TGFβ signalling in naïve hPSCs causes the downregulation of SMAD2/3-target genes and pluripotency exit. Single-cell analyses reveal that naïve and primed hPSCs follow different transcriptional trajectories after inhibition of TGFβ signalling. Primed hPSCs differentiate into neuroectoderm cells, whereas naïve hPSCs transition into trophectoderm. These results establish that there is a continuum for TGFβ pathway function in human pluripotency spanning a developmental window from naïve to primed states. |
format | Online Article Text |
id | pubmed-8410071 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-84100712021-09-03 TGFβ signalling is required to maintain pluripotency of human naïve pluripotent stem cells Osnato, Anna Brown, Stephanie Krueger, Christel Andrews, Simon Collier, Amanda J Nakanoh, Shota Quiroga Londoño, Mariana Wesley, Brandon T Muraro, Daniele Brumm, A Sophie Niakan, Kathy K Vallier, Ludovic Ortmann, Daniel Rugg-Gunn, Peter J eLife Stem Cells and Regenerative Medicine The signalling pathways that maintain primed human pluripotent stem cells (hPSCs) have been well characterised, revealing a critical role for TGFβ/Activin/Nodal signalling. In contrast, the signalling requirements of naïve human pluripotency have not been fully established. Here, we demonstrate that TGFβ signalling is required to maintain naïve hPSCs. The downstream effector proteins – SMAD2/3 – bind common sites in naïve and primed hPSCs, including shared pluripotency genes. In naïve hPSCs, SMAD2/3 additionally bind to active regulatory regions near to naïve pluripotency genes. Inhibiting TGFβ signalling in naïve hPSCs causes the downregulation of SMAD2/3-target genes and pluripotency exit. Single-cell analyses reveal that naïve and primed hPSCs follow different transcriptional trajectories after inhibition of TGFβ signalling. Primed hPSCs differentiate into neuroectoderm cells, whereas naïve hPSCs transition into trophectoderm. These results establish that there is a continuum for TGFβ pathway function in human pluripotency spanning a developmental window from naïve to primed states. eLife Sciences Publications, Ltd 2021-08-31 /pmc/articles/PMC8410071/ /pubmed/34463252 http://dx.doi.org/10.7554/eLife.67259 Text en © 2021, Osnato et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Stem Cells and Regenerative Medicine Osnato, Anna Brown, Stephanie Krueger, Christel Andrews, Simon Collier, Amanda J Nakanoh, Shota Quiroga Londoño, Mariana Wesley, Brandon T Muraro, Daniele Brumm, A Sophie Niakan, Kathy K Vallier, Ludovic Ortmann, Daniel Rugg-Gunn, Peter J TGFβ signalling is required to maintain pluripotency of human naïve pluripotent stem cells |
title | TGFβ signalling is required to maintain pluripotency of human naïve pluripotent stem cells |
title_full | TGFβ signalling is required to maintain pluripotency of human naïve pluripotent stem cells |
title_fullStr | TGFβ signalling is required to maintain pluripotency of human naïve pluripotent stem cells |
title_full_unstemmed | TGFβ signalling is required to maintain pluripotency of human naïve pluripotent stem cells |
title_short | TGFβ signalling is required to maintain pluripotency of human naïve pluripotent stem cells |
title_sort | tgfβ signalling is required to maintain pluripotency of human naïve pluripotent stem cells |
topic | Stem Cells and Regenerative Medicine |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8410071/ https://www.ncbi.nlm.nih.gov/pubmed/34463252 http://dx.doi.org/10.7554/eLife.67259 |
work_keys_str_mv | AT osnatoanna tgfbsignallingisrequiredtomaintainpluripotencyofhumannaivepluripotentstemcells AT brownstephanie tgfbsignallingisrequiredtomaintainpluripotencyofhumannaivepluripotentstemcells AT kruegerchristel tgfbsignallingisrequiredtomaintainpluripotencyofhumannaivepluripotentstemcells AT andrewssimon tgfbsignallingisrequiredtomaintainpluripotencyofhumannaivepluripotentstemcells AT collieramandaj tgfbsignallingisrequiredtomaintainpluripotencyofhumannaivepluripotentstemcells AT nakanohshota tgfbsignallingisrequiredtomaintainpluripotencyofhumannaivepluripotentstemcells AT quirogalondonomariana tgfbsignallingisrequiredtomaintainpluripotencyofhumannaivepluripotentstemcells AT wesleybrandont tgfbsignallingisrequiredtomaintainpluripotencyofhumannaivepluripotentstemcells AT murarodaniele tgfbsignallingisrequiredtomaintainpluripotencyofhumannaivepluripotentstemcells AT brummasophie tgfbsignallingisrequiredtomaintainpluripotencyofhumannaivepluripotentstemcells AT niakankathyk tgfbsignallingisrequiredtomaintainpluripotencyofhumannaivepluripotentstemcells AT vallierludovic tgfbsignallingisrequiredtomaintainpluripotencyofhumannaivepluripotentstemcells AT ortmanndaniel tgfbsignallingisrequiredtomaintainpluripotencyofhumannaivepluripotentstemcells AT rugggunnpeterj tgfbsignallingisrequiredtomaintainpluripotencyofhumannaivepluripotentstemcells |