Cargando…

TGFβ signalling is required to maintain pluripotency of human naïve pluripotent stem cells

The signalling pathways that maintain primed human pluripotent stem cells (hPSCs) have been well characterised, revealing a critical role for TGFβ/Activin/Nodal signalling. In contrast, the signalling requirements of naïve human pluripotency have not been fully established. Here, we demonstrate that...

Descripción completa

Detalles Bibliográficos
Autores principales: Osnato, Anna, Brown, Stephanie, Krueger, Christel, Andrews, Simon, Collier, Amanda J, Nakanoh, Shota, Quiroga Londoño, Mariana, Wesley, Brandon T, Muraro, Daniele, Brumm, A Sophie, Niakan, Kathy K, Vallier, Ludovic, Ortmann, Daniel, Rugg-Gunn, Peter J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8410071/
https://www.ncbi.nlm.nih.gov/pubmed/34463252
http://dx.doi.org/10.7554/eLife.67259
_version_ 1783747091796852736
author Osnato, Anna
Brown, Stephanie
Krueger, Christel
Andrews, Simon
Collier, Amanda J
Nakanoh, Shota
Quiroga Londoño, Mariana
Wesley, Brandon T
Muraro, Daniele
Brumm, A Sophie
Niakan, Kathy K
Vallier, Ludovic
Ortmann, Daniel
Rugg-Gunn, Peter J
author_facet Osnato, Anna
Brown, Stephanie
Krueger, Christel
Andrews, Simon
Collier, Amanda J
Nakanoh, Shota
Quiroga Londoño, Mariana
Wesley, Brandon T
Muraro, Daniele
Brumm, A Sophie
Niakan, Kathy K
Vallier, Ludovic
Ortmann, Daniel
Rugg-Gunn, Peter J
author_sort Osnato, Anna
collection PubMed
description The signalling pathways that maintain primed human pluripotent stem cells (hPSCs) have been well characterised, revealing a critical role for TGFβ/Activin/Nodal signalling. In contrast, the signalling requirements of naïve human pluripotency have not been fully established. Here, we demonstrate that TGFβ signalling is required to maintain naïve hPSCs. The downstream effector proteins – SMAD2/3 – bind common sites in naïve and primed hPSCs, including shared pluripotency genes. In naïve hPSCs, SMAD2/3 additionally bind to active regulatory regions near to naïve pluripotency genes. Inhibiting TGFβ signalling in naïve hPSCs causes the downregulation of SMAD2/3-target genes and pluripotency exit. Single-cell analyses reveal that naïve and primed hPSCs follow different transcriptional trajectories after inhibition of TGFβ signalling. Primed hPSCs differentiate into neuroectoderm cells, whereas naïve hPSCs transition into trophectoderm. These results establish that there is a continuum for TGFβ pathway function in human pluripotency spanning a developmental window from naïve to primed states.
format Online
Article
Text
id pubmed-8410071
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-84100712021-09-03 TGFβ signalling is required to maintain pluripotency of human naïve pluripotent stem cells Osnato, Anna Brown, Stephanie Krueger, Christel Andrews, Simon Collier, Amanda J Nakanoh, Shota Quiroga Londoño, Mariana Wesley, Brandon T Muraro, Daniele Brumm, A Sophie Niakan, Kathy K Vallier, Ludovic Ortmann, Daniel Rugg-Gunn, Peter J eLife Stem Cells and Regenerative Medicine The signalling pathways that maintain primed human pluripotent stem cells (hPSCs) have been well characterised, revealing a critical role for TGFβ/Activin/Nodal signalling. In contrast, the signalling requirements of naïve human pluripotency have not been fully established. Here, we demonstrate that TGFβ signalling is required to maintain naïve hPSCs. The downstream effector proteins – SMAD2/3 – bind common sites in naïve and primed hPSCs, including shared pluripotency genes. In naïve hPSCs, SMAD2/3 additionally bind to active regulatory regions near to naïve pluripotency genes. Inhibiting TGFβ signalling in naïve hPSCs causes the downregulation of SMAD2/3-target genes and pluripotency exit. Single-cell analyses reveal that naïve and primed hPSCs follow different transcriptional trajectories after inhibition of TGFβ signalling. Primed hPSCs differentiate into neuroectoderm cells, whereas naïve hPSCs transition into trophectoderm. These results establish that there is a continuum for TGFβ pathway function in human pluripotency spanning a developmental window from naïve to primed states. eLife Sciences Publications, Ltd 2021-08-31 /pmc/articles/PMC8410071/ /pubmed/34463252 http://dx.doi.org/10.7554/eLife.67259 Text en © 2021, Osnato et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Stem Cells and Regenerative Medicine
Osnato, Anna
Brown, Stephanie
Krueger, Christel
Andrews, Simon
Collier, Amanda J
Nakanoh, Shota
Quiroga Londoño, Mariana
Wesley, Brandon T
Muraro, Daniele
Brumm, A Sophie
Niakan, Kathy K
Vallier, Ludovic
Ortmann, Daniel
Rugg-Gunn, Peter J
TGFβ signalling is required to maintain pluripotency of human naïve pluripotent stem cells
title TGFβ signalling is required to maintain pluripotency of human naïve pluripotent stem cells
title_full TGFβ signalling is required to maintain pluripotency of human naïve pluripotent stem cells
title_fullStr TGFβ signalling is required to maintain pluripotency of human naïve pluripotent stem cells
title_full_unstemmed TGFβ signalling is required to maintain pluripotency of human naïve pluripotent stem cells
title_short TGFβ signalling is required to maintain pluripotency of human naïve pluripotent stem cells
title_sort tgfβ signalling is required to maintain pluripotency of human naïve pluripotent stem cells
topic Stem Cells and Regenerative Medicine
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8410071/
https://www.ncbi.nlm.nih.gov/pubmed/34463252
http://dx.doi.org/10.7554/eLife.67259
work_keys_str_mv AT osnatoanna tgfbsignallingisrequiredtomaintainpluripotencyofhumannaivepluripotentstemcells
AT brownstephanie tgfbsignallingisrequiredtomaintainpluripotencyofhumannaivepluripotentstemcells
AT kruegerchristel tgfbsignallingisrequiredtomaintainpluripotencyofhumannaivepluripotentstemcells
AT andrewssimon tgfbsignallingisrequiredtomaintainpluripotencyofhumannaivepluripotentstemcells
AT collieramandaj tgfbsignallingisrequiredtomaintainpluripotencyofhumannaivepluripotentstemcells
AT nakanohshota tgfbsignallingisrequiredtomaintainpluripotencyofhumannaivepluripotentstemcells
AT quirogalondonomariana tgfbsignallingisrequiredtomaintainpluripotencyofhumannaivepluripotentstemcells
AT wesleybrandont tgfbsignallingisrequiredtomaintainpluripotencyofhumannaivepluripotentstemcells
AT murarodaniele tgfbsignallingisrequiredtomaintainpluripotencyofhumannaivepluripotentstemcells
AT brummasophie tgfbsignallingisrequiredtomaintainpluripotencyofhumannaivepluripotentstemcells
AT niakankathyk tgfbsignallingisrequiredtomaintainpluripotencyofhumannaivepluripotentstemcells
AT vallierludovic tgfbsignallingisrequiredtomaintainpluripotencyofhumannaivepluripotentstemcells
AT ortmanndaniel tgfbsignallingisrequiredtomaintainpluripotencyofhumannaivepluripotentstemcells
AT rugggunnpeterj tgfbsignallingisrequiredtomaintainpluripotencyofhumannaivepluripotentstemcells