Cargando…

Loss of SNORA73 reprograms cellular metabolism and protects against steatohepatitis

Dyslipidemia and resulting lipotoxicity are pathologic signatures of metabolic syndrome and type 2 diabetes. Excess lipid causes cell dysfunction and induces cell death through pleiotropic mechanisms that link to oxidative stress. However, pathways that regulate the response to metabolic stress are...

Descripción completa

Detalles Bibliográficos
Autores principales: Sletten, Arthur C., Davidson, Jessica W., Yagabasan, Busra, Moores, Samantha, Schwaiger-Haber, Michaela, Fujiwara, Hideji, Gale, Sarah, Jiang, Xuntian, Sidhu, Rohini, Gelman, Susan J., Zhao, Shuang, Patti, Gary J., Ory, Daniel S., Schaffer, Jean E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8410784/
https://www.ncbi.nlm.nih.gov/pubmed/34471131
http://dx.doi.org/10.1038/s41467-021-25457-y
_version_ 1783747172127211520
author Sletten, Arthur C.
Davidson, Jessica W.
Yagabasan, Busra
Moores, Samantha
Schwaiger-Haber, Michaela
Fujiwara, Hideji
Gale, Sarah
Jiang, Xuntian
Sidhu, Rohini
Gelman, Susan J.
Zhao, Shuang
Patti, Gary J.
Ory, Daniel S.
Schaffer, Jean E.
author_facet Sletten, Arthur C.
Davidson, Jessica W.
Yagabasan, Busra
Moores, Samantha
Schwaiger-Haber, Michaela
Fujiwara, Hideji
Gale, Sarah
Jiang, Xuntian
Sidhu, Rohini
Gelman, Susan J.
Zhao, Shuang
Patti, Gary J.
Ory, Daniel S.
Schaffer, Jean E.
author_sort Sletten, Arthur C.
collection PubMed
description Dyslipidemia and resulting lipotoxicity are pathologic signatures of metabolic syndrome and type 2 diabetes. Excess lipid causes cell dysfunction and induces cell death through pleiotropic mechanisms that link to oxidative stress. However, pathways that regulate the response to metabolic stress are not well understood. Herein, we show that disruption of the box H/ACA SNORA73 small nucleolar RNAs encoded within the small nucleolar RNA hosting gene 3 (Snhg3) causes resistance to lipid-induced cell death and general oxidative stress in cultured cells. This protection from metabolic stress is associated with broad reprogramming of oxidative metabolism that is dependent on the mammalian target of rapamycin signaling axis. Furthermore, we show that knockdown of SNORA73 in vivo protects against hepatic steatosis and lipid-induced oxidative stress and inflammation. Our findings demonstrate a role for SNORA73 in the regulation of metabolism and lipotoxicity.
format Online
Article
Text
id pubmed-8410784
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-84107842021-09-22 Loss of SNORA73 reprograms cellular metabolism and protects against steatohepatitis Sletten, Arthur C. Davidson, Jessica W. Yagabasan, Busra Moores, Samantha Schwaiger-Haber, Michaela Fujiwara, Hideji Gale, Sarah Jiang, Xuntian Sidhu, Rohini Gelman, Susan J. Zhao, Shuang Patti, Gary J. Ory, Daniel S. Schaffer, Jean E. Nat Commun Article Dyslipidemia and resulting lipotoxicity are pathologic signatures of metabolic syndrome and type 2 diabetes. Excess lipid causes cell dysfunction and induces cell death through pleiotropic mechanisms that link to oxidative stress. However, pathways that regulate the response to metabolic stress are not well understood. Herein, we show that disruption of the box H/ACA SNORA73 small nucleolar RNAs encoded within the small nucleolar RNA hosting gene 3 (Snhg3) causes resistance to lipid-induced cell death and general oxidative stress in cultured cells. This protection from metabolic stress is associated with broad reprogramming of oxidative metabolism that is dependent on the mammalian target of rapamycin signaling axis. Furthermore, we show that knockdown of SNORA73 in vivo protects against hepatic steatosis and lipid-induced oxidative stress and inflammation. Our findings demonstrate a role for SNORA73 in the regulation of metabolism and lipotoxicity. Nature Publishing Group UK 2021-09-01 /pmc/articles/PMC8410784/ /pubmed/34471131 http://dx.doi.org/10.1038/s41467-021-25457-y Text en © The Author(s) 2021, corrected publication 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Sletten, Arthur C.
Davidson, Jessica W.
Yagabasan, Busra
Moores, Samantha
Schwaiger-Haber, Michaela
Fujiwara, Hideji
Gale, Sarah
Jiang, Xuntian
Sidhu, Rohini
Gelman, Susan J.
Zhao, Shuang
Patti, Gary J.
Ory, Daniel S.
Schaffer, Jean E.
Loss of SNORA73 reprograms cellular metabolism and protects against steatohepatitis
title Loss of SNORA73 reprograms cellular metabolism and protects against steatohepatitis
title_full Loss of SNORA73 reprograms cellular metabolism and protects against steatohepatitis
title_fullStr Loss of SNORA73 reprograms cellular metabolism and protects against steatohepatitis
title_full_unstemmed Loss of SNORA73 reprograms cellular metabolism and protects against steatohepatitis
title_short Loss of SNORA73 reprograms cellular metabolism and protects against steatohepatitis
title_sort loss of snora73 reprograms cellular metabolism and protects against steatohepatitis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8410784/
https://www.ncbi.nlm.nih.gov/pubmed/34471131
http://dx.doi.org/10.1038/s41467-021-25457-y
work_keys_str_mv AT slettenarthurc lossofsnora73reprogramscellularmetabolismandprotectsagainststeatohepatitis
AT davidsonjessicaw lossofsnora73reprogramscellularmetabolismandprotectsagainststeatohepatitis
AT yagabasanbusra lossofsnora73reprogramscellularmetabolismandprotectsagainststeatohepatitis
AT mooressamantha lossofsnora73reprogramscellularmetabolismandprotectsagainststeatohepatitis
AT schwaigerhabermichaela lossofsnora73reprogramscellularmetabolismandprotectsagainststeatohepatitis
AT fujiwarahideji lossofsnora73reprogramscellularmetabolismandprotectsagainststeatohepatitis
AT galesarah lossofsnora73reprogramscellularmetabolismandprotectsagainststeatohepatitis
AT jiangxuntian lossofsnora73reprogramscellularmetabolismandprotectsagainststeatohepatitis
AT sidhurohini lossofsnora73reprogramscellularmetabolismandprotectsagainststeatohepatitis
AT gelmansusanj lossofsnora73reprogramscellularmetabolismandprotectsagainststeatohepatitis
AT zhaoshuang lossofsnora73reprogramscellularmetabolismandprotectsagainststeatohepatitis
AT pattigaryj lossofsnora73reprogramscellularmetabolismandprotectsagainststeatohepatitis
AT orydaniels lossofsnora73reprogramscellularmetabolismandprotectsagainststeatohepatitis
AT schafferjeane lossofsnora73reprogramscellularmetabolismandprotectsagainststeatohepatitis