Cargando…
Predicting Drug-Induced Liver Injury Using Machine Learning on a Diverse Set of Predictors
A major challenge in drug development is safety and toxicity concerns due to drug side effects. One such side effect, drug-induced liver injury (DILI), is considered a primary factor in regulatory clearance. The Critical Assessment of Massive Data Analysis (CAMDA) 2020 CMap Drug Safety Challenge goa...
Autores principales: | Adeluwa, Temidayo, McGregor, Brett A., Guo, Kai, Hur, Junguk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8416433/ https://www.ncbi.nlm.nih.gov/pubmed/34483896 http://dx.doi.org/10.3389/fphar.2021.648805 |
Ejemplares similares
-
Machine Learning-Based Predictive Modeling of Postpartum Depression
por: Shin, Dayeon, et al.
Publicado: (2020) -
Exploration of the Anti-Inflammatory Drug Space Through Network Pharmacology: Applications for Drug Repurposing
por: de Anda-Jáuregui, Guillermo, et al.
Publicado: (2018) -
A Network Pharmacology Approach for the Identification of Common Mechanisms of Drug‐Induced Peripheral Neuropathy
por: de Anda‐Jáuregui, Guillermo, et al.
Publicado: (2019) -
Machine learning-based identification and rule-based normalization of adverse drug reactions in drug labels
por: Tiftikci, Mert, et al.
Publicado: (2019) -
Baseline lymphocyte and cholinesterase levels may be the predictors of chronic herbal drug–induced liver injury
por: Zeng, Zhan, et al.
Publicado: (2022)