Cargando…

Genetic polymorphism of CYP2C19 and subcortical variability in the human adult brain

Pharmacogenetic studies have shown involvement of cytochrome P450 enzymes in the metabolism of psychotropic drugs. However, expression and activity on endogenous substrates in the brain may underlie a constitutive role of these enzymes beyond drug metabolism. CYP2C19, which is expressed in the human...

Descripción completa

Detalles Bibliográficos
Autores principales: Stingl, Julia C., Scholl, Catharina, Bosch, Julia E., Viviani, Roberto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8426391/
https://www.ncbi.nlm.nih.gov/pubmed/34497262
http://dx.doi.org/10.1038/s41398-021-01591-5
Descripción
Sumario:Pharmacogenetic studies have shown involvement of cytochrome P450 enzymes in the metabolism of psychotropic drugs. However, expression and activity on endogenous substrates in the brain may underlie a constitutive role of these enzymes beyond drug metabolism. CYP2C19, which is expressed in the human fetal brain during neurodevelopment, shows affinity for endogenous compounds including monoaminergic neurotransmitters, steroid hormones, and endocannabinoids. In this study (N = 608), we looked at the genetic polymorphism of CYP2C19 and its potential associations with structural phenotypes of subcortical brain volume with structural imaging. Using two independent volume estimation techniques, we found converging evidence for a positive association between CYP2C19 activity scores, as inferred from the genotype, and basal ganglia and hippocampal volume. This association was present only in female individuals, raising the possibility that effects on brain morphology may arise through a mechanism involving the metabolism of estrogen steroids.