Cargando…
Listeria monocytogenes Contamination Characteristics in Two Ready-to-Eat Meat Plants From 2019 to 2020 in Shanghai
Listeria monocytogenes is a ubiquitous foodborne pathogen that causes listeriosis and is mostly linked to consumption of ready-to-eat (RTE) foods. Lack of hygiene in food processing environments may be a primary reason for contamination by L. monocytogenes isolates. In this study, L. monocytogenes s...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8427505/ https://www.ncbi.nlm.nih.gov/pubmed/34512606 http://dx.doi.org/10.3389/fmicb.2021.729114 |
_version_ | 1783750186918477824 |
---|---|
author | Zhang, Hongzhi Wang, Jing Chang, Zhaoyu Liu, Xin Chen, Weijie Yu, Ying Wang, Xiaoguang Dong, Qingli Ye, Yulong Zhang, Xi |
author_facet | Zhang, Hongzhi Wang, Jing Chang, Zhaoyu Liu, Xin Chen, Weijie Yu, Ying Wang, Xiaoguang Dong, Qingli Ye, Yulong Zhang, Xi |
author_sort | Zhang, Hongzhi |
collection | PubMed |
description | Listeria monocytogenes is a ubiquitous foodborne pathogen that causes listeriosis and is mostly linked to consumption of ready-to-eat (RTE) foods. Lack of hygiene in food processing environments may be a primary reason for contamination by L. monocytogenes isolates. In this study, L. monocytogenes strains isolated from two RTE meat processing plants in the Shanghai municipality, China, were characterized during 2019–2020 using pulsed-field gel electrophoresis and whole-genome sequencing. Results showed that 29 samples (12.2%) out of 239 were positive for L. monocytogenes, with 21 (18.9%) and 8 (6.25%) isolates from plants A and B, respectively. The packaging room at plant A had the most contamination (14, 48.3%; p < 0.05), with a peak occurrence of 76.5% in processing environments. Nineteen L. monocytogenes isolates belonging to the pulsotype (PT) 7 group were indistinguishable (≥ 95.7%). Furthermore, core-genome multiple loci sequencing typing identified up to nine allelic differences, and the closet pairwise differences among these ST5 isolates included 0–16 small nucleotide polymorphisms. Therefore, L. monocytogenes likely persisted at plant A during 2019–2020 with ongoing clone transmission. In contrast, no L. monocytogenes isolates were identified from processing environments at plant B. Most L. monocytogenes isolates were sampled from raw materials (62.5%). Several isolates (ST378, ST8, and ST120) were detected only once in 2020 and were considered as transient isolates. However, three ST121 isolates with the same PT (PT2) were detected in 2020 and should be noted for their stronger survival ability in harsh environments. These results suggest that continuous monitoring, stringent surveillance, and source tracking are crucial to guaranteeing food safety in RTE food plants. |
format | Online Article Text |
id | pubmed-8427505 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-84275052021-09-10 Listeria monocytogenes Contamination Characteristics in Two Ready-to-Eat Meat Plants From 2019 to 2020 in Shanghai Zhang, Hongzhi Wang, Jing Chang, Zhaoyu Liu, Xin Chen, Weijie Yu, Ying Wang, Xiaoguang Dong, Qingli Ye, Yulong Zhang, Xi Front Microbiol Microbiology Listeria monocytogenes is a ubiquitous foodborne pathogen that causes listeriosis and is mostly linked to consumption of ready-to-eat (RTE) foods. Lack of hygiene in food processing environments may be a primary reason for contamination by L. monocytogenes isolates. In this study, L. monocytogenes strains isolated from two RTE meat processing plants in the Shanghai municipality, China, were characterized during 2019–2020 using pulsed-field gel electrophoresis and whole-genome sequencing. Results showed that 29 samples (12.2%) out of 239 were positive for L. monocytogenes, with 21 (18.9%) and 8 (6.25%) isolates from plants A and B, respectively. The packaging room at plant A had the most contamination (14, 48.3%; p < 0.05), with a peak occurrence of 76.5% in processing environments. Nineteen L. monocytogenes isolates belonging to the pulsotype (PT) 7 group were indistinguishable (≥ 95.7%). Furthermore, core-genome multiple loci sequencing typing identified up to nine allelic differences, and the closet pairwise differences among these ST5 isolates included 0–16 small nucleotide polymorphisms. Therefore, L. monocytogenes likely persisted at plant A during 2019–2020 with ongoing clone transmission. In contrast, no L. monocytogenes isolates were identified from processing environments at plant B. Most L. monocytogenes isolates were sampled from raw materials (62.5%). Several isolates (ST378, ST8, and ST120) were detected only once in 2020 and were considered as transient isolates. However, three ST121 isolates with the same PT (PT2) were detected in 2020 and should be noted for their stronger survival ability in harsh environments. These results suggest that continuous monitoring, stringent surveillance, and source tracking are crucial to guaranteeing food safety in RTE food plants. Frontiers Media S.A. 2021-08-26 /pmc/articles/PMC8427505/ /pubmed/34512606 http://dx.doi.org/10.3389/fmicb.2021.729114 Text en Copyright © 2021 Zhang, Wang, Chang, Liu, Chen, Yu, Wang, Dong, Ye and Zhang. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Zhang, Hongzhi Wang, Jing Chang, Zhaoyu Liu, Xin Chen, Weijie Yu, Ying Wang, Xiaoguang Dong, Qingli Ye, Yulong Zhang, Xi Listeria monocytogenes Contamination Characteristics in Two Ready-to-Eat Meat Plants From 2019 to 2020 in Shanghai |
title | Listeria monocytogenes Contamination Characteristics in Two Ready-to-Eat Meat Plants From 2019 to 2020 in Shanghai |
title_full | Listeria monocytogenes Contamination Characteristics in Two Ready-to-Eat Meat Plants From 2019 to 2020 in Shanghai |
title_fullStr | Listeria monocytogenes Contamination Characteristics in Two Ready-to-Eat Meat Plants From 2019 to 2020 in Shanghai |
title_full_unstemmed | Listeria monocytogenes Contamination Characteristics in Two Ready-to-Eat Meat Plants From 2019 to 2020 in Shanghai |
title_short | Listeria monocytogenes Contamination Characteristics in Two Ready-to-Eat Meat Plants From 2019 to 2020 in Shanghai |
title_sort | listeria monocytogenes contamination characteristics in two ready-to-eat meat plants from 2019 to 2020 in shanghai |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8427505/ https://www.ncbi.nlm.nih.gov/pubmed/34512606 http://dx.doi.org/10.3389/fmicb.2021.729114 |
work_keys_str_mv | AT zhanghongzhi listeriamonocytogenescontaminationcharacteristicsintworeadytoeatmeatplantsfrom2019to2020inshanghai AT wangjing listeriamonocytogenescontaminationcharacteristicsintworeadytoeatmeatplantsfrom2019to2020inshanghai AT changzhaoyu listeriamonocytogenescontaminationcharacteristicsintworeadytoeatmeatplantsfrom2019to2020inshanghai AT liuxin listeriamonocytogenescontaminationcharacteristicsintworeadytoeatmeatplantsfrom2019to2020inshanghai AT chenweijie listeriamonocytogenescontaminationcharacteristicsintworeadytoeatmeatplantsfrom2019to2020inshanghai AT yuying listeriamonocytogenescontaminationcharacteristicsintworeadytoeatmeatplantsfrom2019to2020inshanghai AT wangxiaoguang listeriamonocytogenescontaminationcharacteristicsintworeadytoeatmeatplantsfrom2019to2020inshanghai AT dongqingli listeriamonocytogenescontaminationcharacteristicsintworeadytoeatmeatplantsfrom2019to2020inshanghai AT yeyulong listeriamonocytogenescontaminationcharacteristicsintworeadytoeatmeatplantsfrom2019to2020inshanghai AT zhangxi listeriamonocytogenescontaminationcharacteristicsintworeadytoeatmeatplantsfrom2019to2020inshanghai |