Cargando…
MixTwice: large-scale hypothesis testing for peptide arrays by variance mixing
SUMMARY: Peptide microarrays have emerged as a powerful technology in immunoproteomics as they provide a tool to measure the abundance of different antibodies in patient serum samples. The high dimensionality and small sample size of many experiments challenge conventional statistical approaches, in...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8428605/ https://www.ncbi.nlm.nih.gov/pubmed/33693483 http://dx.doi.org/10.1093/bioinformatics/btab162 |
_version_ | 1783750409107537920 |
---|---|
author | Zheng, Zihao Mergaert, Aisha M. Ong, Irene M. Shelef, Miriam A. Newton, Michael A. |
author_facet | Zheng, Zihao Mergaert, Aisha M. Ong, Irene M. Shelef, Miriam A. Newton, Michael A. |
author_sort | Zheng, Zihao |
collection | PubMed |
description | SUMMARY: Peptide microarrays have emerged as a powerful technology in immunoproteomics as they provide a tool to measure the abundance of different antibodies in patient serum samples. The high dimensionality and small sample size of many experiments challenge conventional statistical approaches, including those aiming to control the false discovery rate (FDR). Motivated by limitations in reproducibility and power of current methods, we advance an empirical Bayesian tool that computes local FDR statistics and local false sign rate statistics when provided with data on estimated effects and estimated standard errors from all the measured peptides. As the name suggests, the MixTwice tool involves the estimation of two mixing distributions, one on underlying effects and one on underlying variance parameters. Constrained optimization techniques provide for model fitting of mixing distributions under weak shape constraints (unimodality of the effect distribution). Numerical experiments show that MixTwice can accurately estimate generative parameters and powerfully identify non-null peptides. In a peptide array study of rheumatoid arthritis, MixTwice recovers meaningful peptide markers in one case where the signal is weak, and has strong reproducibility properties in one case where the signal is strong. AVAILABILITYAND IMPLEMENTATION: MixTwice is available as an R software package https://cran.r-project.org/web/packages/MixTwice/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. |
format | Online Article Text |
id | pubmed-8428605 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-84286052021-09-10 MixTwice: large-scale hypothesis testing for peptide arrays by variance mixing Zheng, Zihao Mergaert, Aisha M. Ong, Irene M. Shelef, Miriam A. Newton, Michael A. Bioinformatics Original Papers SUMMARY: Peptide microarrays have emerged as a powerful technology in immunoproteomics as they provide a tool to measure the abundance of different antibodies in patient serum samples. The high dimensionality and small sample size of many experiments challenge conventional statistical approaches, including those aiming to control the false discovery rate (FDR). Motivated by limitations in reproducibility and power of current methods, we advance an empirical Bayesian tool that computes local FDR statistics and local false sign rate statistics when provided with data on estimated effects and estimated standard errors from all the measured peptides. As the name suggests, the MixTwice tool involves the estimation of two mixing distributions, one on underlying effects and one on underlying variance parameters. Constrained optimization techniques provide for model fitting of mixing distributions under weak shape constraints (unimodality of the effect distribution). Numerical experiments show that MixTwice can accurately estimate generative parameters and powerfully identify non-null peptides. In a peptide array study of rheumatoid arthritis, MixTwice recovers meaningful peptide markers in one case where the signal is weak, and has strong reproducibility properties in one case where the signal is strong. AVAILABILITYAND IMPLEMENTATION: MixTwice is available as an R software package https://cran.r-project.org/web/packages/MixTwice/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2021-03-08 /pmc/articles/PMC8428605/ /pubmed/33693483 http://dx.doi.org/10.1093/bioinformatics/btab162 Text en © The Author(s) 2021. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Papers Zheng, Zihao Mergaert, Aisha M. Ong, Irene M. Shelef, Miriam A. Newton, Michael A. MixTwice: large-scale hypothesis testing for peptide arrays by variance mixing |
title | MixTwice: large-scale hypothesis testing for peptide arrays by variance mixing |
title_full | MixTwice: large-scale hypothesis testing for peptide arrays by variance mixing |
title_fullStr | MixTwice: large-scale hypothesis testing for peptide arrays by variance mixing |
title_full_unstemmed | MixTwice: large-scale hypothesis testing for peptide arrays by variance mixing |
title_short | MixTwice: large-scale hypothesis testing for peptide arrays by variance mixing |
title_sort | mixtwice: large-scale hypothesis testing for peptide arrays by variance mixing |
topic | Original Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8428605/ https://www.ncbi.nlm.nih.gov/pubmed/33693483 http://dx.doi.org/10.1093/bioinformatics/btab162 |
work_keys_str_mv | AT zhengzihao mixtwicelargescalehypothesistestingforpeptidearraysbyvariancemixing AT mergaertaisham mixtwicelargescalehypothesistestingforpeptidearraysbyvariancemixing AT ongirenem mixtwicelargescalehypothesistestingforpeptidearraysbyvariancemixing AT shelefmiriama mixtwicelargescalehypothesistestingforpeptidearraysbyvariancemixing AT newtonmichaela mixtwicelargescalehypothesistestingforpeptidearraysbyvariancemixing |