Cargando…
Reinforcement learning derived chemotherapeutic schedules for robust patient-specific therapy
The in-silico development of a chemotherapeutic dosing schedule for treating cancer relies upon a parameterization of a particular tumour growth model to describe the dynamics of the cancer in response to the dose of the drug. In practice, it is often prohibitively difficult to ensure the validity o...
Autores principales: | Eastman, Brydon, Przedborski, Michelle, Kohandel, Mohammad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8429726/ https://www.ncbi.nlm.nih.gov/pubmed/34504141 http://dx.doi.org/10.1038/s41598-021-97028-6 |
Ejemplares similares
-
Modeling the impact of public response on the COVID-19 pandemic in Ontario
por: Eastman, Brydon, et al.
Publicado: (2021) -
A Reinforcement Learning Approach to Robust Scheduling of Permutation Flow Shop
por: Zhou, Tao, et al.
Publicado: (2023) -
A novel statistical method predicts mutability of the genomic segments of the SARS-CoV-2 virus
por: Darooneh, Amir Hossein, et al.
Publicado: (2021) -
Systems biology informed neural networks (SBINN) predict response and novel combinations for PD-1 checkpoint blockade
por: Przedborski, Michelle, et al.
Publicado: (2021) -
An integrative systems biology approach to overcome venetoclax resistance in acute myeloid leukemia
por: Przedborski, Michelle, et al.
Publicado: (2022)