Cargando…

Combining Child Functioning Data with Learning and Support Needs Data to Create Disability-Identification Algorithms in Fiji’s Education Management Information System

Disability disaggregation of Fiji’s Education Management Information System (FEMIS) is required to determine eligibility for inclusive education grants. Data from the UNICEF/Washington Group Child Functioning Module (CFM) alone is not accurate enough to identify disabilities for this purpose. This s...

Descripción completa

Detalles Bibliográficos
Autores principales: Sprunt, Beth, Marella, Manjula
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8431482/
https://www.ncbi.nlm.nih.gov/pubmed/34501998
http://dx.doi.org/10.3390/ijerph18179413
_version_ 1783750947551313920
author Sprunt, Beth
Marella, Manjula
author_facet Sprunt, Beth
Marella, Manjula
author_sort Sprunt, Beth
collection PubMed
description Disability disaggregation of Fiji’s Education Management Information System (FEMIS) is required to determine eligibility for inclusive education grants. Data from the UNICEF/Washington Group Child Functioning Module (CFM) alone is not accurate enough to identify disabilities for this purpose. This study explores whether combining activity and participation data from the CFM with data on environmental factors specific to learning and support needs (LSN) more accurately identifies children with disabilities. A survey on questions related to children’s LSN (personal assistance, adaptations to learning, or assessment and assistive technology) was administered to teachers within a broader diagnostic accuracy study. Descriptive statistics and correlations were used to analyze relationships between functioning and LSN. While CFM data are useful in distinguishing between disability domains, LSN data are useful in strengthening the accuracy of disability severity data and, crucially, in identifying which children have disability amongst those reported as having some difficulty on the CFM. Combining activity and participation data from the CFM with environmental factors data through algorithms may increase the accuracy of domain-specific disability identification. Amongst children reported as having some difficulty on the CFM, those with disabilities are effectively identified through the addition of LSN data.
format Online
Article
Text
id pubmed-8431482
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-84314822021-09-11 Combining Child Functioning Data with Learning and Support Needs Data to Create Disability-Identification Algorithms in Fiji’s Education Management Information System Sprunt, Beth Marella, Manjula Int J Environ Res Public Health Article Disability disaggregation of Fiji’s Education Management Information System (FEMIS) is required to determine eligibility for inclusive education grants. Data from the UNICEF/Washington Group Child Functioning Module (CFM) alone is not accurate enough to identify disabilities for this purpose. This study explores whether combining activity and participation data from the CFM with data on environmental factors specific to learning and support needs (LSN) more accurately identifies children with disabilities. A survey on questions related to children’s LSN (personal assistance, adaptations to learning, or assessment and assistive technology) was administered to teachers within a broader diagnostic accuracy study. Descriptive statistics and correlations were used to analyze relationships between functioning and LSN. While CFM data are useful in distinguishing between disability domains, LSN data are useful in strengthening the accuracy of disability severity data and, crucially, in identifying which children have disability amongst those reported as having some difficulty on the CFM. Combining activity and participation data from the CFM with environmental factors data through algorithms may increase the accuracy of domain-specific disability identification. Amongst children reported as having some difficulty on the CFM, those with disabilities are effectively identified through the addition of LSN data. MDPI 2021-09-06 /pmc/articles/PMC8431482/ /pubmed/34501998 http://dx.doi.org/10.3390/ijerph18179413 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Sprunt, Beth
Marella, Manjula
Combining Child Functioning Data with Learning and Support Needs Data to Create Disability-Identification Algorithms in Fiji’s Education Management Information System
title Combining Child Functioning Data with Learning and Support Needs Data to Create Disability-Identification Algorithms in Fiji’s Education Management Information System
title_full Combining Child Functioning Data with Learning and Support Needs Data to Create Disability-Identification Algorithms in Fiji’s Education Management Information System
title_fullStr Combining Child Functioning Data with Learning and Support Needs Data to Create Disability-Identification Algorithms in Fiji’s Education Management Information System
title_full_unstemmed Combining Child Functioning Data with Learning and Support Needs Data to Create Disability-Identification Algorithms in Fiji’s Education Management Information System
title_short Combining Child Functioning Data with Learning and Support Needs Data to Create Disability-Identification Algorithms in Fiji’s Education Management Information System
title_sort combining child functioning data with learning and support needs data to create disability-identification algorithms in fiji’s education management information system
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8431482/
https://www.ncbi.nlm.nih.gov/pubmed/34501998
http://dx.doi.org/10.3390/ijerph18179413
work_keys_str_mv AT spruntbeth combiningchildfunctioningdatawithlearningandsupportneedsdatatocreatedisabilityidentificationalgorithmsinfijiseducationmanagementinformationsystem
AT marellamanjula combiningchildfunctioningdatawithlearningandsupportneedsdatatocreatedisabilityidentificationalgorithmsinfijiseducationmanagementinformationsystem