Cargando…
Combining Child Functioning Data with Learning and Support Needs Data to Create Disability-Identification Algorithms in Fiji’s Education Management Information System
Disability disaggregation of Fiji’s Education Management Information System (FEMIS) is required to determine eligibility for inclusive education grants. Data from the UNICEF/Washington Group Child Functioning Module (CFM) alone is not accurate enough to identify disabilities for this purpose. This s...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8431482/ https://www.ncbi.nlm.nih.gov/pubmed/34501998 http://dx.doi.org/10.3390/ijerph18179413 |
_version_ | 1783750947551313920 |
---|---|
author | Sprunt, Beth Marella, Manjula |
author_facet | Sprunt, Beth Marella, Manjula |
author_sort | Sprunt, Beth |
collection | PubMed |
description | Disability disaggregation of Fiji’s Education Management Information System (FEMIS) is required to determine eligibility for inclusive education grants. Data from the UNICEF/Washington Group Child Functioning Module (CFM) alone is not accurate enough to identify disabilities for this purpose. This study explores whether combining activity and participation data from the CFM with data on environmental factors specific to learning and support needs (LSN) more accurately identifies children with disabilities. A survey on questions related to children’s LSN (personal assistance, adaptations to learning, or assessment and assistive technology) was administered to teachers within a broader diagnostic accuracy study. Descriptive statistics and correlations were used to analyze relationships between functioning and LSN. While CFM data are useful in distinguishing between disability domains, LSN data are useful in strengthening the accuracy of disability severity data and, crucially, in identifying which children have disability amongst those reported as having some difficulty on the CFM. Combining activity and participation data from the CFM with environmental factors data through algorithms may increase the accuracy of domain-specific disability identification. Amongst children reported as having some difficulty on the CFM, those with disabilities are effectively identified through the addition of LSN data. |
format | Online Article Text |
id | pubmed-8431482 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84314822021-09-11 Combining Child Functioning Data with Learning and Support Needs Data to Create Disability-Identification Algorithms in Fiji’s Education Management Information System Sprunt, Beth Marella, Manjula Int J Environ Res Public Health Article Disability disaggregation of Fiji’s Education Management Information System (FEMIS) is required to determine eligibility for inclusive education grants. Data from the UNICEF/Washington Group Child Functioning Module (CFM) alone is not accurate enough to identify disabilities for this purpose. This study explores whether combining activity and participation data from the CFM with data on environmental factors specific to learning and support needs (LSN) more accurately identifies children with disabilities. A survey on questions related to children’s LSN (personal assistance, adaptations to learning, or assessment and assistive technology) was administered to teachers within a broader diagnostic accuracy study. Descriptive statistics and correlations were used to analyze relationships between functioning and LSN. While CFM data are useful in distinguishing between disability domains, LSN data are useful in strengthening the accuracy of disability severity data and, crucially, in identifying which children have disability amongst those reported as having some difficulty on the CFM. Combining activity and participation data from the CFM with environmental factors data through algorithms may increase the accuracy of domain-specific disability identification. Amongst children reported as having some difficulty on the CFM, those with disabilities are effectively identified through the addition of LSN data. MDPI 2021-09-06 /pmc/articles/PMC8431482/ /pubmed/34501998 http://dx.doi.org/10.3390/ijerph18179413 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Sprunt, Beth Marella, Manjula Combining Child Functioning Data with Learning and Support Needs Data to Create Disability-Identification Algorithms in Fiji’s Education Management Information System |
title | Combining Child Functioning Data with Learning and Support Needs Data to Create Disability-Identification Algorithms in Fiji’s Education Management Information System |
title_full | Combining Child Functioning Data with Learning and Support Needs Data to Create Disability-Identification Algorithms in Fiji’s Education Management Information System |
title_fullStr | Combining Child Functioning Data with Learning and Support Needs Data to Create Disability-Identification Algorithms in Fiji’s Education Management Information System |
title_full_unstemmed | Combining Child Functioning Data with Learning and Support Needs Data to Create Disability-Identification Algorithms in Fiji’s Education Management Information System |
title_short | Combining Child Functioning Data with Learning and Support Needs Data to Create Disability-Identification Algorithms in Fiji’s Education Management Information System |
title_sort | combining child functioning data with learning and support needs data to create disability-identification algorithms in fiji’s education management information system |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8431482/ https://www.ncbi.nlm.nih.gov/pubmed/34501998 http://dx.doi.org/10.3390/ijerph18179413 |
work_keys_str_mv | AT spruntbeth combiningchildfunctioningdatawithlearningandsupportneedsdatatocreatedisabilityidentificationalgorithmsinfijiseducationmanagementinformationsystem AT marellamanjula combiningchildfunctioningdatawithlearningandsupportneedsdatatocreatedisabilityidentificationalgorithmsinfijiseducationmanagementinformationsystem |