Cargando…
Unification of sparse Bayesian learning algorithms for electromagnetic brain imaging with the majorization minimization framework
Methods for electro- or magnetoencephalography (EEG/MEG) based brain source imaging (BSI) using sparse Bayesian learning (SBL) have been demonstrated to achieve excellent performance in situations with low numbers of distinct active sources, such as event-related designs. This paper extends the theo...
Autores principales: | Hashemi, Ali, Cai, Chang, Kutyniok, Gitta, Müller, Klaus-Robert, Nagarajan, Srikantan S., Haufe, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8433122/ https://www.ncbi.nlm.nih.gov/pubmed/34182100 http://dx.doi.org/10.1016/j.neuroimage.2021.118309 |
Ejemplares similares
-
Robust estimation of noise for electromagnetic brain imaging with the champagne algorithm
por: Cai, Chang, et al.
Publicado: (2020) -
Empirical Bayesian localization of event-related time-frequency neural activity dynamics
por: Cai, Chang, et al.
Publicado: (2022) -
Unification of Electromagnetism and Gravitation
por: Shahverdiyev, S S
Publicado: (2002) -
Introduction to the unification of weak and electromagnetic interactions
por: Martin, F
Publicado: (1980) -
Non-Parametric Statistical Thresholding for Sparse Magnetoencephalography Source Reconstructions
por: Owen, Julia P., et al.
Publicado: (2012)