Cargando…
Deep and Machine Learning Using SEM, FTIR, and Texture Analysis to Detect Polysaccharide in Raspberry Powders
In the paper, an attempt was made to use methods of artificial neural networks (ANN) and Fourier transform infrared spectroscopy (FTIR) to identify raspberry powders that are different from each other in terms of the amount and the type of polysaccharide. Spectra in the absorbance function (FTIR) we...
Autores principales: | Przybył, Krzysztof, Koszela, Krzysztof, Adamski, Franciszek, Samborska, Katarzyna, Walkowiak, Katarzyna, Polarczyk, Mariusz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8434077/ https://www.ncbi.nlm.nih.gov/pubmed/34502718 http://dx.doi.org/10.3390/s21175823 |
Ejemplares similares
-
Application of Deep and Machine Learning Using Image Analysis to Detect Fungal Contamination of Rapeseed
por: Przybył, Krzysztof, et al.
Publicado: (2020) -
Classification of Dried Strawberry by the Analysis of the Acoustic Sound with Artificial Neural Networks
por: Przybył, Krzysztof, et al.
Publicado: (2020) -
Neural Image Analysis and Electron Microscopy to Detect and Describe Selected Quality Factors of Fruit and Vegetable Spray-Dried Powders—Case Study: Chokeberry Powder
por: Przybył, Krzysztof, et al.
Publicado: (2019) -
Classification of Honey Powder Composition by FTIR Spectroscopy Coupled with Chemometric Analysis
por: Matwijczuk, Arkadiusz, et al.
Publicado: (2022) -
The Process of Pasting and Gelling Modified Potato Starch with LF-NMR
por: Walkowiak, Katarzyna, et al.
Publicado: (2022)